Graphical Abstract Figure

Schematic representation of solar CPC-integrated LTTD system

Graphical Abstract Figure

Schematic representation of solar CPC-integrated LTTD system

Close modal

Abstract

This study introduces an innovative approach to saline water desalination using a stationary compound parabolic concentrator (CPC) to power a low-temperature thermal desalination (LTTD) system. The integration of CPC into LTTD was thermodynamically modeled and simulated under tropical climatic conditions. Key parameters, including hot feed saline water temperature, temperature gradient, cold-water inlet temperature, feed saline water flowrate, flash chamber pressure, and varying salinity levels, were examined for their impact on freshwater production. Additionally, the design requirements for CPC arrays and economic considerations were thoroughly analyzed to achieve a large-scale freshwater production capacity of 1000 L/day. The results showed that increasing the thermal gradient, feed saline water temperature, and flowrate, while decreasing the flash chamber pressure, significantly enhanced freshwater production. For example, as the temperature gradient increased from 7 °C to 20 °C, the average freshwater yield rose from 75.23 L /h to 120.19 L /h. Achieving the target freshwater production required 126 to 152 CPC units with an area of approximately 3 m2 for hot feed saline water temperatures between 37 °C and 50 °C. Furthermore, increasing the feed saline water flowrate from 7500 L /h to 22,500 L /h resulted in a 66.48% increase in freshwater yield. Reducing flash chamber pressure from 12.35 kPa to 4.5 kPa led to a substantial increase in potable water production, ranging from 21.65% to 90.9% across different temperature gradients. The study also evaluated the effects of salinity levels, finding a slight decrease in freshwater production with higher salinity.

References

1.
Sampathkumar
,
A.
,
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2023
, “
Enhancement of Yield in Single Slope Solar Still by Composite Heat Storage Material—Experimental and Thermo-Economic Assessment
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021005
.
2.
Abutayeh
,
M.
, and
Goswami
,
D. Y.
,
2010
, “
Experimental Simulation of Solar Flash Desalination
,”
ASME J. Sol. Energy Eng.
,
132
(
4
), p.
041015
.
3.
Hoepner
,
T.
, and
Lattemann
,
S.
,
2003
, “
Chemical Impacts From Seawater Desalination Plants—a Case Study of the Northern Red Sea
,”
Desalination
,
152
(
1–3
), pp.
133
140
.
4.
Belessiotis
,
Vassilis
,
Kalogirou
,
Soteris
, and
Delyannis
,
Emmy
,
2016
, “Chapter One—Desalination Methods and Technologies—Water and Energy,”
Thermal Solar Desalination
,
V.
Belessiotis
,
S.
Kalogirou
, and
E.
Delyannis
, eds.,
Academic Press
,
London, UK
, pp.
1
19
.
5.
Venkatesan
,
G.
,
Iniyan
,
S.
, and
Jalihal
,
P.
,
2014
, “
A Theoretical and Experimental Study of a Small-Scale Barometric Sealed Flash Evaporative Desalination System Using Low Grade Thermal Energy
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
629
640
.
6.
Muthuvairavan
,
G.
, and
Natarajan
,
S. K.
,
2023
, “Large-Scale Solar Desalination System,”
Solar Thermal Conversion Technologies for Industrial Process Heating
,
T. V.
Arjunan
,
V.
Selvaraj
, and
M. M.
Matheswaran
, eds.,
Taylor & Francis
,
Boca Raton
, pp.
169
199
.
7.
Natarajan
,
S. K.
,
Suraparaju
,
S. K.
, and
Elavarasan
,
R. M.
,
2022
, “
A Review on Low-Temperature Thermal Desalination Approach
,”
Environ. Sci. Pollut. Res.
,
29
(
22
), pp.
32443
32466
.
8.
Cai
,
B.
,
Tuo
,
X.
,
Song
,
Z.
,
Zheng
,
Y.
,
Gu
,
H.
, and
Wang
,
H.
,
2018
, “
Modeling of Spray Flash Evaporation Based on Droplet Analysis
,”
Appl. Therm. Eng.
,
130
, pp.
1044
1051
.
9.
Qi
,
C.
,
Lv
,
H.
,
Feng
,
H.
,
Lv
,
Q.
, and
Xing
,
Y.
,
2017
, “
Performance and Economic Analysis of the Distilled Seawater Desalination Process Using Low-Temperature Waste Hot Water
,”
Appl. Therm. Eng.
,
122
, pp.
712
722
.
10.
Ambarita
,
H.
,
2016
, “
Study on the Performance of Natural Vacuum Desalination System Using Low Grade Heat Source
,”
Case Stud. Therm. Eng.
,
8
, pp.
346
358
.
11.
Jims John Wessley
,
G.
,
Jawahar
,
C. P.
, and
Koshy Mathews
,
P.
,
2016
, “
Preliminary Investigations on an Air-Cooled Based Low Temperature Flash Evaporation Desalination System for Small-Scale Applications
,”
Desalin. Water Treat.
,
57
(
34
), pp.
15735
15739
.
12.
Jin
,
Z.
, and
Wang
,
H.
,
2015
, “
Modeling and Experiments on Ocean Thermal Energy for Desalination
,”
Int. J. Sustain. Energy
,
34
(
2
), pp.
103
112
.
13.
Chik
,
M. A. T.
,
Othman
,
N. A.
,
Sarip
,
S.
,
Ikegami
,
Y.
,
My
,
A.
,
Othman
,
N.
,
Yacob
,
R.
,
Hara
,
H.
,
Zakaria
,
Z.
, and
Izzuan
,
H.
,
2015
, “
Design Optimization of Power Generation and Desalination Application in Malaysia Utilizing Ocean Thermal Energy
,”
J. Teknol.
,
77
(
1
), pp.
177
185
.
14.
Venkatesan
,
G.
,
Iniyan
,
S.
, and
Jalihal
,
P.
,
2015
, “
A Desalination Method Utilising Low-Grade Waste Heat Energy
,”
Desalin. Water Treat.
,
56
(
8
), pp.
2037
2045
.
15.
Mutair
,
S.
, and
Ikegami
,
Y.
,
2014
, “
Design Optimization of Shore-Based Low Temperature Thermal Desalination System Utilizing the Ocean Thermal Energy
,”
ASME J. Sol. Energy Eng.
,
136
(
4
), p.
041005
.
16.
Chung
,
H.
,
Wibowo
,
S.
,
Fajar
,
B.
,
Shin
,
Y.
, and
Jeong
,
H.
,
2012
, “
Study on Low Pressure Evaporation of Fresh Water Generation System Model
,”
J. Mech. Sci. Technol.
,
26
(
2
), pp.
421
426
.
17.
Gude
,
V. G.
, and
Nirmalakhandan
,
N.
,
2009
, “
Desalination at Low Temperatures and Low Pressures
,”
Desalination
,
244
(
1–3
), pp.
239
247
.
18.
Senthil Kumar
,
R.
,
Mani
,
A.
, and
Kumaraswamy
,
S.
,
2007
, “
Experimental Studies on Desalination System for Ocean Thermal Energy Utilisation
,”
Desalination
,
207
(
1–3
), pp.
1
8
.
19.
Abraham
,
R.
,
2007
, “
Experimental Studies on a Desalination Plant Using Ocean Temperature Difference
,”
Int. J. Nucl. Desalin.
,
2
(
4
), pp.
383
392
.
20.
Muthunayagam
,
A. E.
,
Ramamurthi
,
K.
, and
Paden
,
J. R.
,
2005
, “
Modeling and Experiments on Vaporization of Saline Water at Low Temperatures and Reduced Pressures
,”
Appl. Therm. Eng.
,
25
(
5–6
), pp.
941
952
.
21.
Tay
,
J. H.
,
Low
,
S. C.
, and
Jeyaseelan
,
S.
,
1996
, “
Vacuum Desalination for Water Purification Using Waste Heat
,”
Desalination
,
106
(
1–3
), pp.
131
135
.
22.
Low
,
S. C.
, and
Tay
,
P. J. H.
,
1991
, “
Vacuum Desalination Using Waste Heat From a Steam Turbine
,”
Desalination
,
81
(
1–3
), pp.
321
331
.
23.
Muthuvairavan
,
G.
, and
Kumar Natarajan
,
S.
,
2023
, “
Experimental Study on Drying Kinetics and Thermal Modeling of Drying Kohlrabi Under Different Solar Drying Methods
,”
Ther. Sci. Eng. Prog.
,
44
, p.
102074
.
24.
Natarajan
,
S. K.
,
Suraparaju
,
S. K.
,
Muthuvairavan
,
G.
,
Elangovan
,
E.
, and
Samykano
,
M.
,
2024
, “
Experimental Analysis and Development of Novel Drying Kinetics Model for Drying Grapes in a Double Slope Solar Dryer
,”
Renewable Energy
,
236
, p.
121508
.
25.
Natarajan
,
S. K.
,
Muthuvairavan
,
G.
,
Suraparaju
,
S. K.
,
Elangovan
,
E.
, and
Samykano
,
M.
,
2023
, “
Innovative Insights Into Solar Drying of Kola Fish: Mechanisms, Modeling, and Optimization
,”
Appl. Solar Energy
,
59
(
6
), pp.
887
902
.
26.
Yadav
,
A.
,
Samykano
,
M.
,
Pandey
,
A. K.
,
Natarajan
,
S. K.
,
Vasudevan
,
G.
,
Muthuvairavan
,
G.
, and
Suraparaju
,
S. K.
,
2024
, “
Sustainable Phase Change Material Developments for Thermally Comfortable Smart Buildings: A Critical Review
,”
Process Saf. Environ. Prot.
,
191
( Part B), pp.
1918
1955
.
27.
Singh
,
K. A.
,
Muthuvairavan
,
G.
, and
Natarajan
,
S. K.
,
2023
, “
Numerical Investigation of Modified Conical Cavity Receiver With Different Heat Transfer Fluids
,”
Energy Sources, Part A
,
45
(
3
), pp.
6964
6980
.
28.
Santhi Rekha
,
S. M.
, and
Sukchai
,
S.
,
2018
, “
Design of Phase Change Material Based Domestic Solar Cooking System for Both Indoor and Outdoor Cooking Applications
,”
ASME J. Sol. Energy Eng.
,
140
(
4
), p.
041010
.
29.
Iqbal
,
A. A.
, and
Al-Alili
,
A.
,
2019
, “
Review of Solar Cooling Technologies in the MENA Region
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
010801
.
30.
Muthuvairavan
,
G.
,
Manikandan
,
S.
,
Elangovan
,
E.
, and
Natarajan
,
S. K.
,
2023
, “Assessment of Solar Dryer Performance for Drying Different Food Materials: A Comprehensive Review,”
Drying Science and Technology
,
S.
Bhattacharyya
, ed.,
IntechOpen
,
Rijeka
, p.
Ch. 1
.
31.
Manikandan
,
S.
,
Muthuvairavan
,
G.
,
Samykano
,
M.
, and
Natarajan
,
S. K.
,
2024
, “
Numerical Simulation of Various PCM Container Configurations for Solar Dryer Application
,”
J. Energy Storage
,
86 Part B
, p.
111294
.
32.
Das
,
S.
,
Agarwal
,
P.
,
Sahota
,
L.
,
Meena
,
Y. K.
,
Singh
,
M.
, and
Gill
,
B. S.
,
2024
, “
Economic and Performance Analysis of Modified Solar Distillation System Coupling Different Integrations Using Carbon Quantum Dot Nanoparticles: Generalized Thermal Model
,”
ASME J. Sol. Energy Eng.
,
146
(
4
), p.
041008
.
33.
Khallaf
,
A. M.
,
El-Sebaii
,
A. A.
, and
Hegazy
,
M. M.
,
2021
, “
Investigation of Thermal Performance of Single Basin Solar Still With Soft Drink Cans Filled With Sand as a Storage Medium
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061011
.
34.
Al-Kharabsheh
,
S.
, and
Goswami
,
D. Y.
,
2004
, “
Theoretical Analysis of a Water Desalination System Using Low Grade Solar Heat
,”
ASME J. Sol. Energy Eng.
,
126
(
2
), pp.
774
780
.
35.
Chen
,
Q.
,
Kum Ja
,
M.
,
Li
,
Y.
, and
Chua
,
K. J.
,
2018
, “
Evaluation of a Solar-Powered Spray-Assisted Low-Temperature Desalination Technology
,”
Appl. Energy
,
211
, pp.
997
1008
.
36.
Kim
,
G. S.
,
Cao
,
T.
, and
Hwang
,
Y.
,
2021
, “
Thermoeconomic Investigation for a Multi-Stage Solar-Thermal Vacuum Membrane Distillation System for Coastal Cities
,”
Desalination
,
498
, p.
114797
.
37.
Miladi
,
R.
,
Frikha
,
N.
, and
Gabsi
,
S.
,
2021
, “
Modeling and Energy Analysis of a Solar Thermal Vacuum Membrane Distillation Coupled With a Liquid Ring Vacuum Pump
,”
Renewable Energy
,
164
, pp.
1395
1407
.
38.
Guo
,
P.
,
Li
,
T.
,
Wang
,
Y.
, and
Li
,
J.
,
2021
, “
Energy and Exergy Analysis of a Spray-Evaporation Multi-Effect Distillation Desalination System
,”
Desalination
,
500
, p.
114890
.
39.
Chen
,
Q.
,
Oh
,
S. J.
,
Li
,
Y.
, and
Ja
,
M. K.
,
2020
, “
Thermodynamic Optimization of a Low-Temperature Desalination System Driven by Sensible Heat Sources
,”
Energy
,
192
, p.
116633
.
40.
Koirala
,
R.
,
Linh Ve
,
Q.
,
Date
,
A.
,
Inthavong
,
K.
, and
Akbarzadeh
,
A.
,
2023
, “
Influence of Inlet Pressure and Geometric Variations on the Applicability of Eductor in Low Temperature Thermal Desalinations
,”
J. King Saud Univ. Eng. Sci.
,
35
(
2
), pp.
137
147
.
41.
Thakkar
,
H.
,
Sadasivuni
,
K. k.
,
Ramana
,
P. V.
,
Panchal
,
H.
,
Suresh
,
M.
,
Israr
,
M.
,
Elklawy
,
M.
, and
AlmElDin
,
H.
,
2022
, “
Comparative Analysis of the Use of Flash Evaporator and Solar Still With a Solar Desalination System
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
1561
1568
.
42.
Andrés-Mañas
,
J. A.
,
Roca
,
L.
,
Ruiz-Aguirre
,
A.
,
Acién
,
F. G.
,
Gil
,
J. D.
, and
Zaragoza
,
G.
,
2020
, “
Application of Solar Energy to Seawater Desalination in a Pilot System Based on Vacuum Multi-Effect Membrane Distillation
,”
Appl. Energy
,
258
, p.
114068
.
43.
El-Dessouky
,
H. T.
, and
Ettouney
,
H. M.
,
2002
, “Chapter 2—Single Effect Evaporation,”
Fundamentals of Salt Water Desalination
,
H. T.
El-Dessouky
and
H. M.
Ettouney
, eds.,
Elsevier Science B.V.
,
Amsterdam
, pp.
19
48
.
44.
El-Dessouky
,
H. T.
, and
Ettouney
,
H. M.
,
2002
, “Chapter 6—Multi-Stage Flash Desalination,”
Fundamentals of Salt Water Desalination
,
H. T.
El-Dessouky
,
H. M.
Ettouney
, eds.,
Elsevier Science B.V.
,
Amsterdam
, pp.
271
407
.
45.
El-Dessouky
,
H. T.
, and
Ettouney
,
H. M.
,
2002
, “Appendix A—Thermodynamic Properties,”
Fundamentals of Salt Water Desalination
,
H. T.
El-Dessouky
, and
H. M.
Ettouney
, eds.,
Elsevier Science B.V.
,
Amsterdam
, pp.
525
563
.
46.
Sharqawy
,
M. H.
,
Lienhard V
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Thermophysical Properties of Seawater: A Review of Existing Correlations and Data
,”
Desalin. Water Treat.
,
16
(
1–3
), pp.
354
380
.
47.
Bellos
,
E.
,
Korres
,
D.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2016
, “
Design, Simulation and Optimization of a Compound Parabolic Collector
,”
Sustain. Energy Technol. Assess.
,
16
, pp.
53
63
.
48.
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2021
, “
Productivity Enhancement of Single-Slope Solar Still With Novel Bottom Finned Absorber Basin Inserted in Phase Change Material (PCM): Techno-Economic and Enviro-Economic Analysis
,”
Environ. Sci. Pollut. Res.
,
28
(
33
), pp.
45985
46006
.
49.
Abraham
,
R.
, and
Singh
,
T. R.
,
2006
, “
Thermocline-Driven Desalination: The Technology and Its Potential
,”
Int. J. Nucl. Desalin.
,
2
(
2
), pp.
109
116
.
50.
Balaji
,
D.
,
Abraham
,
R.
, and
Ramana Murthy
,
M. V.
,
2016
, “
Experimental Study on the Vacuum Load of Low-Temperature Thermal Desalination Plant
,”
Desalin. Water Treat.
,
57
(
55
), pp.
26830
26844
.
51.
Nayar
,
K. G.
,
Sharqawy
,
M. H.
,
Banchik
,
L. D.
, and
Lienhard
,
J. H.
,
2016
, “
Thermophysical Properties of Seawater: A Review and New Correlations That Include Pressure Dependence
,”
Desalination
,
390
, pp.
1
24
.
You do not currently have access to this content.