Graphical Abstract Figure

Illustration of the dust detection algorithm through image analysis. Sample selection process and the subsequent generation of dirt percentage based on the simulated soiling degree

Graphical Abstract Figure

Illustration of the dust detection algorithm through image analysis. Sample selection process and the subsequent generation of dirt percentage based on the simulated soiling degree

Close modal

Abstract

It is widely known that photovoltaic technology has been massively distributed over the last decade despite its low-efficiency ratio. Dust deposition reduces this efficiency even more lowering the energy production and reducing module performance. In this work, we developed an artificial vision algorithm based on CIELAB color space to identify dust over panels in an automatic way. The proposed algorithm uses a series of images of soiled panels and creates a simulation with a known soiling coefficient to compare with the real ones. All the images were taken directly by drones or cellphone cameras. The results prove satisfactory with a maximum error of approximately 4.14% with respect to visual inspection and a resolution of 4.4%. The algorithm is independent of training and uses the soiling over the panel to create the simulation so that it could be valid at any location.

References

1.
Ember
,
2023
,
Statistical Review of World Energy (2023)
,
Energy Institute
,
London
.
2.
Khalid
,
H. M.
,
Rafique
,
Z.
,
Muyeen
,
S.
,
Raqeeb
,
A.
,
Said
,
Z.
,
Saidur
,
R.
, and
Sopian
,
K.
,
2023
, “
Dust Accumulation and Aggregation on PV Panels: An Integrated Survey on Impacts, Mathematical Models, Cleaning Mechanisms, and Possible Sustainable Solution
,”
Sol. Energy
,
251
, pp.
261
285
.
3.
IRENA
,
2019
,
Global Energy Transformation: A Roadmap to 2050
, 2019th ed.,
International Renewable Energy Agency
,
Dhabi
.
4.
Sunpower
, “Sunpower Performance Solar Panels Technical Specifications,” https://sunpower.global/au/homeowners/products/solar-panels, Accessed January 21, 2025.
5.
Parry
,
D.
,
2013
,
NRL Designs Multi-Junction Solar Cell to Break Efficiency Barrier
,
U.S. Naval Research Laboratory
,
Washington, DC
.
6.
Mani
,
M.
, and
Pillai
,
R.
,
2010
, “
Impact of Dust on Solar Photovoltaic (PV) Performance: Research Status, Challenges and Recommendations
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3124
3131
.
7.
Appels
,
R.
,
Lefevre
,
B.
,
Herteleer
,
B.
,
Goverde
,
H.
,
Beerten
,
A.
,
Paesen
,
R.
,
De Medts
,
K.
,
Driesen
,
J.
, and
Poortmans
,
J.
,
2013
, “
Effect of Soiling on Photovoltaic Modules
,”
Sol. Energy
,
96
, pp.
283
291
.
8.
Jaszczur
,
M.
,
Teneta
,
J.
,
Styszko
,
K.
,
Hassan
,
Q.
,
Burzyńska
,
P.
,
Marcinek
,
E.
, and
Łopian
,
N.
,
2019
, “
The Field Experiments and Model of the Natural Dust Deposition Effects on Photovoltaic Module Efficiency
,”
Environ. Sci. Pollut. Res.
,
26
(
9
), pp.
8402
8417
.
9.
Ilse
,
K. K.
,
Figgis
,
B. W.
,
Naumann
,
V.
,
Hagendorf
,
C.
, and
Bagdahn
,
J.
,
2018
, “
Fundamentals of Soiling Processes on Photovoltaic Modules
,”
Renewable Sustainable Energy Rev.
,
98
, pp.
239
254
.
10.
Conceição
,
R.
,
González-Aguilar
,
J.
,
Merrouni
,
A. A.
, and
Romero
,
M.
,
2022
, “
Soiling Effect in Solar Energy Conversion Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
162
, p.
112434
.
11.
Gholami
,
A.
,
Khazaee
,
I.
,
Eslami
,
S.
,
Zandi
,
M.
, and
Akrami
,
E.
,
2018
, “
Experimental Investigation of Dust Deposition Effects on Photo-Voltaic Output Performance
,”
Sol. Energy
,
159
, pp.
346
352
.
12.
Kaiss
,
E.-C. A.
, and
Hassan
,
N. M.
,
2023
, “
Numerical Modeling of Dust Deposition Rate on Ground-Mounted Solar Photovoltaic Panels
,”
ASME J. Sol. Energy Eng.
,
145
(
4
), p.
041003
.
13.
Gupta
,
V.
,
Sharma
,
M.
,
Pachauri
,
R. K.
, and
Dinesh Babu
,
K.
,
2019
, “
Comprehensive Review on Effect of Dust on Solar Photovoltaic System and Mitigation Techniques
,”
Sol. Energy
,
191
, pp.
596
622
.
14.
Khodakaram-Tafti
,
A.
, and
Yaghoubi
,
M.
,
2020
, “
Experimental Study on the Effect of Dust Deposition on Photovoltaic Performance at Various Tilts in Semi-Arid Environment
,”
Sustainable Energy Technol. Assess.
,
42
, p.
100822
.
15.
Smith
,
M. K.
,
Wamser
,
C. C.
,
James
,
K. E.
,
Moody
,
S.
,
Sailor
,
D. J.
, and
Rosenstiel
,
T. N.
,
2013
, “
Effects of Natural and Manual Cleaning on Photovoltaic Output
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
034505
.
16.
Hasan
,
K.
,
Yousuf
,
S. B.
,
Tushar
,
M. S. H. K.
,
Das
,
B. K.
,
Das
,
P.
, and
Islam
,
M. S.
,
2022
, “
Effects of Different Environmental and Operational Factors on the PV Performance: A Comprehensive Review
,”
Energy Sci. Eng.
,
10
(
2
), pp.
656
675
.
17.
Simon
,
M.
, and
Meyer
,
E. L.
,
2010
, “
Detection and Analysis of Hot-Spot Formation in Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
94
(
2
), pp.
106
113
.
18.
Ramspeck
,
K.
,
Schenk
,
S.
,
Duphorn
,
D.
,
Metz
,
A.
, and
Meixner
,
M.
,
2014
, “
In-Line Thermography for Reliable Hot Spot Detection and Process Control
,”
Energy Procedia
,
55
, pp.
133
140
.
19.
Schill
,
C.
,
Anderson
,
A.
,
Baldus-Jeursen
,
C.
,
Burnham
,
L.
,
Micheli
,
L.
,
Parlevliet
,
D.
,
Pilat
,
E.
,
Stridh
,
B.
, and
Urrejola
,
E.
,
2022
, “
Soiling Losses—Impact on the Performance of Photovoltaic Power Plants
,” IEA PVPS Task 13, Report, International Energy Agency, Paris, France. https://iea-pvps.org/key-topics/soiling-losses-impact-on-the-performance-of-photovoltaic-power-plants/, Accessed January 21, 2025.
20.
Ilse
,
K.
,
Micheli
,
L.
,
Figgis
,
B. W.
,
Lange
,
K.
,
Daßler
,
D.
,
Hanifi
,
H.
,
Wolfertstetter
,
F.
, et al.,
2019
, “
Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar Power Generation
,”
Joule
,
3
(
10
), pp.
2303
2321
.
21.
Jamil
,
W. J.
,
Rahman
,
H. A.
,
Shaari
,
S.
, and
Desa
,
M. K. M.
,
2020
, “
Modeling of Soiling Derating Factor in Determining Photovoltaic Outputs
,”
IEEE J. Photovoltaics
,
10
(
5
), pp.
1417
1423
.
22.
Cristaldi
,
L.
,
Faifer
,
M.
,
Rossi
,
M.
,
Catelani
,
M.
,
Ciani
,
L.
,
Dovere
,
E.
, and
Jerace
,
S.
,
2012
, “
Economical Evaluation of PV System Losses Due to the Dust and Pollution
,”
International Instrumentation and Measurement Technology Conference Proceedings
,
Graz, Austria
,
May 2012
.
23.
Cao
,
Y.
,
Pang
,
D.
,
Yan
,
Y.
,
Jiang
,
Y.
, and
Tian
,
C.
,
2023
, “
A Photovoltaic Surface Defect Detection Method for Building Based on Deep Learning
,”
J. Build. Eng.
,
70
, p.
106375
.
24.
Fan
,
S.
,
Wang
,
Y.
,
Cao
,
S.
,
Zhao
,
B.
,
Sun
,
T.
, and
Liu
,
P.
,
2022
, “
A Deep Residual Neural Network Identification Method for Uneven Dust Accumulation on Photovoltaic (PV) Panels
,”
Energy
,
239
(
Part D
), p.
122302
.
25.
Cruz-Rojas
,
T.
,
Franco
,
J. A.
,
Hernandez-Escobedo
,
Q.
,
Ruiz-Robles
,
D.
, and
Juarez-Lopez
,
J. M.
,
2023
, “
A Novel Comparison of Image Semantic Segmentation Techniques for Detecting Dust in Photovoltaic Panels Using Machine Learning and Deep Learning
,”
Renewable Energy
,
217
, p.
119126
.
26.
Yap
,
W.
,
Galet
,
R.
, and
Yeo
,
K.
,
2015
, “
Quantitative Analysis of Dust and Soiling on Solar PV Panels in the Tropics Utilizing Image-Processing Methods
,”
R.
Egan
, and
R.
Passey
, eds.,
Proceedings of the Asia Pacific Solar Research Conference
,
Canberra, Australia
,
Nov. 29–Dec. 1
.
27.
Fan
,
S.
,
Wang
,
X.
,
Wang
,
Z.
,
Sun
,
B.
,
Zhang
,
Z.
,
Cao
,
S.
,
Zhao
,
B.
, and
Wang
,
Y.
,
2022
, “
A Novel Image Enhancement Algorithm to Determine the Dust Level on Photovoltaic (PV) Panels
,”
Renewable Energy
,
201
(
Part 1
), pp.
172
180
.
28.
Sarricolea
,
P.
,
Herrera-Ossandon
,
M.
, and
Meseguer-Ruiz
,
Ó.
,
2017
, “
Climatic Regionalisation of Continental Chile
,”
J. Maps
,
13
(
2
), pp.
66
73
.
29.
Alam
,
M. S.
,
Goh
,
S. F.
, and
Dacharaju
,
S.
,
2005
, “
Three-Dimensional Color Pattern Recognition Using Fringe-Adjusted Joint Transform Correlation with CIELAB Coordinates
,”
Optical Pattern Recognition XVI
,
Orlando, FL
,
Mar. 28
.
30.
Yeop Myong
,
S.
, and
Won Jeon
,
S.
,
2015
, “
Design of Esthetic Color for Thin-Film Silicon Semi-Transparent Photovoltaic Modules
,”
Sol. Energy Mater. Sol. Cells
,
143
, pp.
442
449
.
31.
Pratt
,
W. K.
,
2007
,
Digital Image Processing
,
John Wiley & Sons, Ltd
,
Hoboken, NJ
.
32.
Szeliski
,
R.
,
2022
,
Computer Vision
(
Texts in Computer Science
),
Springer International Publishing
,
Cham
.
You do not currently have access to this content.