Abstract

The limitations of traditional construction methods can be addressed by 3D printing, a technology that prints structural buildings in layers, which reduces labor, construction time, wastage of material, and the overall cost of the structure. This paper presents a literature review of the state-of-the-art of construction using 3D printing technology. We present a definition and a brief history of 3D printing in construction and discuss research contributions. Subsequently, we describe methods of pre-printing design, 3D design programs for construction, and on-site printing methods. Furthermore, the nature of the materials used, the printing properties, and the different construction mixtures are discussed. Additionally, the effects of commonly used chemical admixtures on the properties of the concrete mix are reviewed. Moreover, mixture tests for ensuring the requirements are met and the challenges faced in the standards and regulations during printing are discussed. Subsequently, we consider successful real-world cases from various companies and controlled laboratory environments using 3D printing based on the printing method, materials used, and challenges faced by each company. Lastly, we present future recommendations to improve the capability and printing quality of 3D printing technology.

References

1.
Hossain
,
M. A.
,
Zhumabekova
,
A.
,
Paul
,
S. C.
, and
Kim
,
J. R.
,
2020
, “
A Review of 3D Printing in Construction and Its Impact on the Labor Market
,”
Sustainability
,
12
(
20
), p.
8492
.
2.
Biron
,
M.
,
2018
,
Thermoplastics and Thermoplastic Composites
,
William Andrew Publishing
,
Chennai, India
.
3.
Whitaker
,
M.
,
2014
, “
The History of 3D Printing in Healthcare
,”
Bull. R. Coll. Surg. Engl.
,
96
(
7
), pp.
228
229
.
4.
Khoshnevis
,
B.
,
2004
, “
Automated Construction by Contour Crafting—Related Robotics and Information Technologies
,”
Autom. Constr.
,
13
(
1
), pp.
5
19
.
5.
Papachristoforou
,
M.
,
Mitsopoulos
,
V.
, and
Stefanidou
,
M.
,
2018
, “
Evaluation of Workability Parameters in 3D Printing Concrete
,”
Procedia Struct. Integr.
,
10
, pp.
155
162
.
6.
Lim
,
S.
,
Buswell
,
R.
,
Le
,
T.
,
Wackrow
,
R.
,
Austin
,
S.
,
Gibb
,
A.
, and
Thorpe
,
T.
,
2011
, “
Development of a Viable Concrete Printing Process
,”
Proceedings of the 28th ISARC
,
Seoul, Korea
, pp.
665
670
.
7.
Cesaretti
,
G.
,
Enrico
,
D.
,
De Kestelier
,
X.
,
Colla
,
V.
, and
Pambaguian
,
L.
,
2014
, “
Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
,”
Acta Astronaut.
,
93
, pp.
430
450
.
8.
Gupta
,
K. C.
,
Garg
,
R.
, and
Chadha
,
R.
,
1981
, “
Computer-Aided Design of Microwave Circuits
,” NASA STI/Recon Technical Report A. 82, p.
39449
.
9.
Hack
,
N.
,
Lauer
,
W.
,
Langenberg
,
S.
,
Gramazio
,
F.
, and
Kohler
,
M.
,
2013
, “
Overcoming Repetition: Robotic Fabrication Processes at a Large Scale
,”
Int. J. Archit. Comput.
,
11
(
3
), pp.
285
299
.
10.
Buswell
,
R.
,
Leal de Silva
,
W. R.
,
Jones
,
S. Z.
, and
Dirrenberger
,
J.
,
2018
, “
3D Printing Using Concrete Extrusion: A Roadmap for Research
,”
Cem. Concr. Res.
,
112
, pp.
37
49
.
11.
Shakor
,
P.
,
Renneberg
,
J.
,
Nejadi
,
S.
, and
Paul
,
G.
,
2017
, “
Optimisation of Different Concrete Mix Designs for 3D Printing by Utilizing 6DOF Industrial Robot
,”
Proceedings of the 34th International Symposium on Automation and Robotics in Construction
,
Taipei, Taiwan
, pp.
268
275
.
12.
Khoshnevis
,
B.
,
2011
, “
Gantry Robotics System and Related Material Transport for Contour Crafting
,” US Patent 8,029,710.
13.
Bos
,
F.
,
Wolfs
,
R.
,
Ahmed
,
Z.
, and
Salet
,
T.
,
2016
, “
Additive Manufacturing of Concrete in Construction: Potentials and Challenges of 3D Concrete Printing
,”
Virtual Phys. Prototyp.
,
11
(
3
), pp.
209
225
.
14.
Arayici
,
Y.
, and
Aouad
,
G.
,
2010
, “
Building Information Modelling (BIM) for Construction Lifecycle Management
,”
Constr. Build. Des. Mater. Tech.
,
2010
, pp.
99
118
.
15.
Lowther
,
D. A.
, and
Silvester
,
P.
,
2012
,
Computer-Aided Design in Magnetics
,
Springer Science & Business Media
,
Waltham Abbey, HERTS, UK
.
16.
Grimm
,
T.
,
2004
,
User’s Guide to Rapid Prototyping
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
17.
Iancu
,
C.
,
Iancu
,
D.
, and
Stăncioiu
,
A.
,
2010
, “
From CAD Model to 3D Print Via “STL” File Format
,”
Fiabil. Durab.
,
1
, pp.
73
80
.
18.
Perkins
,
I.
, and
Skitmore
,
M.
,
2015
, “
Three-Dimensional Printing in the Construction Industry: A Review
,”
Int. J. Constr. Manage.
,
15
(
1
), pp.
1
9
.
19.
Perrot
,
A.
,
Rangeard
,
D.
, and
Pierre
,
A.
,
2016
, “
Structural Built-Up of Cement-Based Materials Used for 3D-Printing Extrusion Techniques
,”
Mater. Struct.
,
49
(
4
), pp.
1213
1220
.
20.
Raghavan
,
A.
,
Neethu
,
P. P.
, and
Joy
,
A.
,
2017
, “
3D Printing Robotic Arm
,”
Int. J. Eng. Manage. Res.
,
7
, pp.
631
634
.
21.
Percy
,
S. W.
,
Perry
,
J. E.
, and
Lück
,
C. L.
,
2019
, “
A Multimeter Design Kit for Circuit Theory Education
,”
Paper Presented at ASEE Zone I Conference & Workshop
,
Niagara Falls, NY
,
April 11–15
.
22.
Lee
,
S.
,
Kim
,
H. C.
,
Hur
,
S. M.
, and
Yang
,
D. Y.
,
2002
, “
STL File Generation From Measured Point Data by Segmentation and Delaunay Triangulation
,”
Comput. Aided Des.
,
34
(
10
), pp.
691
704
.
23.
Minetto
,
R.
,
Volpato
,
N.
,
Stolfi
,
J.
,
Gregori
,
R. M. M. H.
, and
da Silva
,
M. V. G.
,
2017
, “
An Optimal Algorithm for 3D Triangle Mesh Slicing
,”
Comput. Aided Des.
,
92
, pp.
1
10
.
24.
Sakin
,
M.
, and
Kiroglu
,
Y. C.
,
2017
, “
3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM
,”
Energy Procedia
,
134
, pp.
702
711
.
25.
Cline
,
L. S.
,
2016
,
3D Printing and CNC Fabrication with SketchU
,
McGraw-Hill Education
,
Overland Park, KS
.
26.
Al Jassmi
,
H.
,
Al Najjar
,
F.
, and
Mourad
,
A. H. I.
,
2018
, “
Large-Scale 3D Printing: The Way Forward
,”
IOP Conference Series: Materials Science and Engineering
,
Kuala Lumpur, Malaysia
,
Apr. 6
,
IOP Publishing
.
27.
Kreiger
,
M. A.
,
MacAllister
,
B. A.
,
Wilhoit
,
J. M.
, and
Case
,
M. P.
,
2015
, “
The Current State of 3D Printing for Use in Construction
,”
Proceedings of the 2015 Conference on Autonomous and Robotic Construction of Infrastructure
,
Ames, IA
,
June 2
, pp.
149
158
.
28.
Zhang
,
J.
, and
Khoshnevis
,
B.
,
2009
, “
Contour Crafting Process Plan Optimization
,”
Proceedings of the 26th ISARC
,
Austin, TX
, pp.
576
583
.
29.
Zidan
,
A.
,
Alayoubi
,
A.
,
Coburn
,
J.
,
Asfari
,
S.
,
Ghammraoui
,
B.
,
Cruz
,
C. N.
, and
Ashraf
,
M.
,
2019
, “
Extrudability Analysis of Drug Loaded Pastes for 3D Printing of Modified Release Tablets
,”
Int. J. Pharm.
,
554
, pp.
292
301
.
30.
Jagoda
,
J. A.
,
2020
, “
An Analysis of the Viability of 3D-Printed Construction as an Alternative to Conventional Construction Methods in the Expeditionary Environment
,”
Thesis
,
Air Force Institute of Technology, Wright-Patterson Air Force Base
,
OH
.
31.
Boumiz
,
A.
,
Vernet
,
C.
, and
Tenoudji
,
F. C.
,
1996
, “
Mechanical Properties of Cement Pastes and Mortars at Early Ages: Evolution With Time and Degree of Hydration
,”
Adv. Cem. Based Mater.
,
3
(
3–4
), pp.
94
106
.
32.
Trtnik
,
G.
,
Turk
,
G.
,
Kavčič
,
F.
, and
Bosiljkov
,
V. B.
,
2008
, “
Possibilities of Using the Ultrasonic Wave Transmission Method to Estimate Initial Setting Time of Cement Paste
,”
Cem. Concr. Res.
,
38
(
11
), pp.
1336
1342
.
33.
Ramachandran
,
V. S.
,
1996
,
Concrete Admixtures Handbook: Properties, Science and Technology
,
Noyes Publications
,
Park Ridge, NJ
.
34.
Mailvaganam
,
N.
,
Rixom
,
M. R.
,
Manson
,
D. P.
, and
Gonzales
,
C.
,
1999
,
Chemical Admixtures for Concrete
,
CRC Press
,
London, UK
.
35.
Erzengin
,
S. G.
,
Kaya
,
K.
,
Özkorucuklu
,
P.
,
Özdemir
,
V.
, and
Yıldırım
,
G.
,
2018
, “
The Properties of Cement Systems Superplasticized With Methacrylic Ester-Based Polycarboxylates
,”
Constr. Build. Mater.
,
166
, pp.
96
109
.
36.
Huynh
,
L.
,
Beattie
,
D. A.
,
Fornasiero
,
D.
, and
Ralston
,
J.
,
2006
, “
Effect of Polyphosphate and Naphthalene Sulfonate Formaldehyde Condensate on the Rheological Properties of Dewatered Tailings and Cemented Paste Backfill
,”
Miner. Eng.
,
19
(
1
), pp.
28
36
.
37.
Gu
,
L.
,
Li
,
H.
,
Yang
,
X.
,
Dong
,
B.
, and
Wen
,
Z.
,
2020
, “
Leakage Behavior of Toxic Substances of Naphthalene Sulfonate-Formaldehyde Condensation From Cement Based Materials
,”
J. Environ. Manage.
,
255
, p.
109934
.
38.
Pei
,
M.
,
Yang
,
Y.
,
Zhang
,
X.
,
Zhang
,
J.
, and
Dong
,
J.
,
2004
, “
Synthesis and the Effects of Water-Soluble Sulfonated Acetone–Formaldehyde Resin on the Properties of Concrete
,”
Cem. Concr. Res.
,
34
(
8
), pp.
1417
1420
.
39.
Yilmaz
,
V. T.
, and
Glasser
,
F. P.
,
1989
, “
Influence of Sulphonated Melamine Formaldehyde Superplasticizer on Cement Hydration and Microstructure
,”
Adv. Cem. Res.
,
2
(
7
), pp.
111
119
.
40.
Nadarajah
,
N.
,
2018
, “
Development of Concrete 3D Printing
,”
M.Sc. thesis
,
University School of Engineering, Building Technology
,
Aalto, Finland
.
41.
Jo
,
J. H.
,
Jo
,
B. W.
,
Cho
,
W.
, and
Kim
,
J.
,
2020
, “
Development of a 3D Printer for Concrete Structures: Laboratory Testing of Cementitious Materials
,”
Int. J. Concr. Struct. Mater.
,
14
(
1
), p.
13
.
42.
Winnefeld
,
F.
,
Martin
,
L. H. J.
,
Müller
,
C. J.
, and
Lothenbach
,
B.
,
2017
, “
Using Gypsum to Control Hydration Kinetics of CSA Cements
,”
Constr. Build. Mater.
,
155
, pp.
154
163
.
43.
Malaeb
,
Z.
,
Hachem
,
H.
,
Tourbah
,
A.
,
Maalouf
,
T.
,
El Zarwi
,
N.
, and
Hamzeh
,
N.
,
2015
, “
3d Concrete Printing: Machine and Mix Design
,”
Int. J. Civil Eng.
,
6
, pp.
14
22
.
44.
Le
,
T. T.
,
Austin
,
S. A.
,
Lim
,
S.
,
Buswell
,
R. A.
,
Gibb
,
A. G. F.
, and
Thorpe
,
T.
,
2012
, “
Mix Design and Fresh Properties for High-Performance Printing Concrete
,”
Mater. Struct.
,
45
(
8
), pp.
1221
1232
.
45.
Tay
,
Y. W. D.
,
Panda
,
B.
,
Paul
,
S. C.
,
Mohamed
,
N. A. N.
,
Tan
,
M. J.
, and
Leong
,
K. F.
, et al
2016
, “
Processing and Properties of Construction Materialsfor 3D Printing
,”
Materials Science Forum
,
861
, pp.
177
181
.
46.
Gosselin
,
C.
,
Duballet
,
R.
,
Roux
,
P.
,
Gaudillière
,
N.
,
Dirrenberger
,
J.
, and
Morel
,
P.
,
2016
, “
Large-Scale 3D Printing of Ultra-High Performance Concrete–A New Processing Route for Architects and Builders
,”
Mater. Des.
,
100
, pp.
102
109
.
47.
Galicia-Aldama
,
E.
,
Mayorga
,
M.
,
Arteaga-Arcos
,
J. C.
, and
Romero-Salazar
,
L.
,
2019
, “
Rheological Behaviour of Cement Paste Added With Natural Fibres
,”
Constr. Build. Mater.
,
198
, pp.
148
157
.
48.
Hambach
,
M.
, and
Volkmer
,
D.
,
2017
, “
Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste
,”
Cem. Concr. Compos.
,
79
, pp.
62
70
.
49.
Hambach
,
M.
,
Rutzen
,
M.
, and
Volkmer
,
D.
,
2019
, “Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste,”
3D Concrete Printing Technology
,
JG
Sanjayan
,
A
Nazari
, and
B
Nematollahi
, eds.,
Elsevier
,
Oxford, UK
, pp.
73
113
.
50.
Kazemian
,
A.
,
Yuan
,
X.
,
Cochran
,
E.
, and
Khoshnevis
,
B.
,
2017
, “
Cementitious Materials for Construction-Scale 3D Printing: Laboratory Testing of Fresh Printing Mixture
,”
Constr. Build. Mater.
,
145
, pp.
639
647
.
51.
Camacho
,
D.
,
Clayton
,
P.
,
O'Brien
,
W.
,
Seepersad
,
C.
,
Juenger
,
M.
,
Ferron
,
R.
, and
Salamone
,
S.
,
2018
, “
Applications of Additive Manufacturing in the Construction Industry–A Forward-Looking Review
,”
Autom. Constr.
,
89
, pp.
110
119
.
52.
Zhang
,
J.
,
Wang
,
J.
,
Dong
,
S.
,
Yu
,
X.
, and
Han
,
B.
,
2019
, “
A Review of the Current Progress and Application of 3D Printed Concrete
,”
Compos. Part A Appl. Sci. Manuf.
,
125
, p.
105533
.
53.
Yang
,
H.
,
Chung
,
J. K. H.
,
Chen
,
Y.
, and
Li
,
Y.
,
2018
, “
The Cost Calculation Method of Construction 3D Printing Aligned With Internet of Things
,”
EURASIP J. Wirel. Commun. Netw.
,
2018
(
1
), p.
147
.
54.
De Schutter
,
G.
,
Lesage
,
K.
,
Mechtcherine
,
V.
,
Nerella
,
V. N.
,
Habert
,
G.
, and
Agusti-Juan
,
I.
,
2018
, “
Vision of 3D Printing With Concrete—Technical, Economic and Environmental Potentials
,”
Cem. Concr. Res.
,
112
, pp.
25
36
.
55.
Mohammed
,
M. I.
,
Cadd
,
B.
,
Peart
,
G.
, and
Gibson
,
I.
,
2018
, “
Augmented Patient-Specific Facial Prosthesis Production Using Medical Imaging Modelling and 3D Printing Technologies for Improved Patient Outcomes
,”
Virtual Phys. Prototyp.
,
13
(
3
), pp.
164
176
.
56.
Diggs
,
B. N.
,
Liesen
,
R. J.
,
Case
,
M. P.
,
Hamoush
,
S.
, and
Megri
,
A. C.
,
2021
, “
Automated Construction of Expeditionary Structures (ACES): Energy Modeling
,” Technical Report No. ERDC/CERL TR-21-6,
US Army Engineer Research and Development Center
,
Vicksburg, MS
.
57.
Paglia
,
C.
,
Wombacher
,
F.
, and
Böhni
,
H.
,
2001
, “
The Influence of Alkali-Free and Alkaline Shotcrete Accelerators Within Cement Systems: I. Characterization of the Setting Behavior
,”
Cem. Concr. Res.
,
31
(
6
), pp.
913
918
.
58.
Maltese
,
C.
,
Pistolesi
,
C.
,
Bravo
,
A.
,
Cella
,
F.
,
Cerulli
,
T.
, and
Salvioni
,
D.
,
2007
, “
A Case History: Effect of Moisture on the Setting Behaviour of a Portland Cement Reacting With an Alkali-Free Accelerator
,”
Cem. Concr. Res.
,
37
(
6
), pp.
856
865
.
59.
Zhang
,
J.
,
Gong
,
C.
,
Guo
,
Z.
, and
Zhang
,
M.
,
2009
, “
Engineered Cementitious Composite With Characteristic of Low Drying Shrinkage
,”
Cem. Concr. Res.
,
39
(
4
), pp.
303
312
.
60.
Rongbing
,
B.
, and
Jian
,
S.
,
2005
, “
Synthesis and Evaluation of Shrinkage-Reducing Admixture for Cementitious Materials
,”
Cem. Concr. Res.
,
35
(
3
), pp.
445
448
.
61.
Lee
,
S. J.
, and
Won
,
J.
,
2016
, “
Shrinkage Characteristics of Structural Nano-Synthetic Fibre-Reinforced Cementitious Composites
,”
Compos. Struct.
,
157
, pp.
236
243
.
62.
Truong
,
A.
,
2019
, “
State-of-the-Art Review on 3D Printing Technology Applications in Construction
,”
M.Sc. thesis
,
University of California
,
Irvine, CA
.
63.
El-Sayegh
,
S.
,
Romdhane
,
L.
, and
Manjikian
,
S.
,
2020
, “
A Critical Review of 3D Printing in Construction: Benefits, Challenges, and Risks
,”
Arch. Civ. Mech. Eng.
,
20
(
2
), p.
34
.
64.
Jagoda
,
J.
,
Diggs-McGee
,
B.
,
Kreiger
,
M.
, and
Schuldt
,
S.
,
2020
, “
The Viability and Simplicity of 3D-Printed Construction: A Military Case Study
,”
Infrastructures
,
5
(
4
), p.
35
.
65.
Diggs-McGee
,
B. N.
,
Kreiger
,
E. L.
,
Kreiger
,
M. A.
, and
Case
,
M. P.
,
2019
, “
Print Time Vs. Elapsed Time: A Temporal Analysis of a Continuous Printing Operation for Additive Constructed Concrete
,”
Addit. Manuf.
,
28
, pp.
205
214
.
66.
Lu
,
B.
,
Weng
,
Y.
,
Li
,
M.
,
Qian
,
Y.
,
Leong
,
K. F.
,
Tan
,
M. J.
, and
Qian
,
S.
,
2019
, “
A Systematical Review of 3D Printable Cementitious Materials
,”
Constr. Build. Mater.
,
207
, pp.
477
490
.
67.
Smith
,
R. E.
,
Griffin
,
G.
,
Rice
,
T.
, and
Hagehofer-Daniell
,
B.
,
2018
, “
Mass Timber: Evaluating Construction Performance
,”
Archit. Eng. Des. Manage.
,
14
(
1–2
), pp.
127
138
.
68.
Geneidy
,
O.
,
Ismaeel
,
W. S.
, and
Abbas
,
A.
,
2019
, “
A Critical Review for Applying Three-Dimensional Concrete Wall Printing Technology in Egypt
,”
Archit. Sci. Rev.
,
62
(
5
), pp.
438
452
.
You do not currently have access to this content.