Numerical study of the effect of jet position (JP) on cooling process of an array of heated obstacles simulating electronic components has been investigated based on realizable k–ε model. Jet positions have been changed to impinge each row of obstacles consecutively. The experiments have been achieved at three different values of jet-to-channel Reynolds number ratio, Rej/Rec = 1, 2, and 4. In this study, a comparison between two different cooling processes, cross flow only (CF) and jet impingement with cross flow (JICF), has been achieved. The flow structure, heat transfer characteristics, and the pumping power have been investigated for different jet positions. The results show that the jet position affects significantly the flow structure, as well as the heat transfer characteristics. According to the results of average heat transfer coefficient and the pumping power, the more effective jet position for all values of jet-to-channel Reynolds number ratio (1, 2, and 4) is achieved when the jets impinge the third row of obstacles (JP3).

References

1.
Meinders
,
E. R.
,
Van Der Meer
,
T. H.
, and
Hanjalic
,
K.
,
1998
, “
Local Convective Heat Transfer From an Array of Wall-Mounted Cubes
,”
Int. J. Heat Mass Transfer
,
41
(
2
), pp.
335
346
.
2.
Meinders
,
E. R.
, and
Hanjali
,
K.
,
2002
, “
Experimental Study of the Convective Heat Transfer From In-Line And Staggered Configurations of Two Wall-Mounted Cubes
,”
Int. J. Heat Mass Transfer
,
45
(
3
), pp.
465
482
.
3.
Yaghoubi
,
M.
, and
Velayati
,
E.
,
2005
, “
Undeveloped Convective Heat Transfer From an Array of Cubes in Cross-Stream Direction
,”
Int. J. Therm. Sci.
,
44
(
8
), pp.
756
765
.
4.
Meinders
,
E. R.
, and
Hanjalić
,
K.
,
1999
, “
Vortex Structure and Heat Transfer in Turbulent Flow Over a Wall-Mounted Matrix of Cubes
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
255
267
.
5.
Ničeno
,
B.
,
Dronkers
,
A. D. T.
, and
Hanjalić
,
K.
,
2002
, “
Turbulent Heat Transfer From a Multi-Layered Wall-Mounted Cube Matrix: A Large Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
23
(
2
), pp.
173
185
.
6.
Mohamed
,
M. M.
,
2006
, “
Air Cooling Characteristics of a Uniform Square Modules Array for Electronic Device Heat Sink
,”
Appl. Therm. Eng.
,
26
(
5–6
), pp.
486
493
.
7.
Tseng
,
Y. S.
,
Fu
,
H. H.
,
Hung
,
T. C.
, and
Pei
,
B. S.
,
2007
, “
An Optimal Parametric Design to Improve Chip Cooling
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
1823
1831
.
8.
Felczak
,
M.
,
Wiecek
,
B.
, and
De Mey
,
G.
,
2009
, “
Optimal Placement of Electronic Devices in Forced Convective Cooling Conditions
,”
Microelectron. Reliab.
,
49
(
12
), pp.
1537
1545
.
9.
Jubran
,
B. A.
, and
Al-Salaymeh
,
A. S.
,
1999
, “
Thermal Wakes Measurement in Electronic Modules in the Presence of Heat Transfer Enhancement Devices
,”
Appl. Therm. Eng.
,
19
(
10
), pp.
1081
1096
.
10.
Gong
,
L.
,
Zhao
,
J.
, and
Huang
,
S.
,
2015
, “
Numerical Study on Layout of Micro-Channel Heat Sink for Thermal Management of Electronic Devices
,”
Appl. Therm. Eng.
,
88
(
5
), pp.
480
490
.
11.
Masip
,
Y.
,
Rivas
,
A.
,
Larraona
,
G. S.
,
Anton
,
R.
,
Ramos
,
J. C.
, and
Moshfegh
,
B.
,
2012
, “
Experimental Study of the Turbulent Flow Around a Single Wall-Mounted Cube Exposed to a Cross-Flow and an Impinging Jet
,”
Int. J. Heat Fluid Flow
,
38
, pp.
50
71
.
12.
Larraona
,
G. S.
,
Rivas
,
A.
,
Antón
,
R.
,
Ramos
,
J. C.
,
Pastor
,
I.
, and
Moshfegh
,
B.
,
2013
, “
Computational Parametric Study of an Impinging Jet in a Cross-Flow Configuration for Electronics Cooling Applications
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
428
438
.
13.
Tummers
,
M. J.
, Flikweert, M. A., Hanjalic, K., Rodink, R., and Moshfegh, B.,
2005
, “
Impinging Jet Cooling of Wall Mounted Cubes
,”
ERCOFTAC International Symposium Engineering Turbulence Modelling and Measurements (ETMM6)
, Sardinia, Italy, May 23–25, pp.
773
782
.
14.
Popovac
,
M.
, and
Hanjalić
,
K.
,
2007
, “
Large-Eddy Simulations of Flow Over a Jet-Impinged Wall-Mounted Cube in a Cross Stream
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1360
1378
.
15.
Popovac
,
M.
, and
Hanjalić
,
K.
,
2009
, “
Vortices and Heat Flux Around a Wall-Mounted Cube Cooled Simultaneously by a Jet and a Crossflow
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
4047
4062
.
16.
Rundström
,
D.
, and
Moshfegh
,
B.
,
2009
, “
Large-Eddy Simulation of an Impinging Jet in a Cross-Flow on a Heated Wall-Mounted Cube
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
921
931
.
17.
Kucinskas
,
K. J.
,
2013
, “
Vortical Structures of an Impinging Jet in Cross-Flow
,”
COSMOL
Conference, Rotterdam, The Netherlands, Oct. 23–25, pp. 1–7.https://www.comsol.co.in/paper/download/180693/kucinskas_paper.pdf
18.
Yang
,
K.
,
Yang
,
T.
,
Tu
,
C.
,
Yeh
,
C.
, and
Lee
,
M.
,
2015
, “
A Novel Flat Polymer Heat Pipe With Thermal Via for Cooling Electronic Devices
,”
Energy Convers. Manage.
,
100
, pp.
37
44
.
19.
Zhu
,
L.
, and
Yu
,
J.
,
2016
, “
Simulation of Steady-State Operation of an Ejector-Assisted Loop Heat Pipe With a Flat Evaporator for Application in Electronic Cooling
,”
Appl. Therm. Eng.
,
95
(
25
), pp.
236
246
.
20.
Cheng
,
W.
,
Zhang
,
W.
,
Shao
,
S.
,
Jiang
,
L.
, and
Hong
,
D.
,
2015
, “
Effects of Inclination Angle on Plug-Chip Spray Cooling in Integrated Enclosure
,”
Appl. Therm. Eng.
,
91
, pp.
202
209
.
21.
Rubio-Jimenez
,
C. A.
,
Hernandez-Guerrero
,
A.
,
Cervantes
,
J. G.
,
Lorenzini-Gutierrez
,
D.
, and
Gonzalez-Valle
,
C. U.
,
2016
, “
CFD Study of Constructal Microchannel Networks for Liquid-Cooling of Electronic Devices
,”
Appl. Therm. Eng.
,
95
, pp.
374
381
.
22.
Gharbi
,
S.
,
Harmand
,
S.
, and
Ben
,
S.
,
2015
, “
Experimental Comparison Between Different Configurations of PCM Based Heat Sinks for Cooling Electronic Components
,”
Appl. Therm. Eng.
,
87
, pp.
454
462
.
23.
Kalbasi
,
R.
, and
Salimpour
,
M. R.
,
2015
, “
Constructal Design of Phase Change Material Enclosures Used for Cooling Electronic Devices
,”
Appl. Therm. Eng.
,
84
, pp.
339
349
.
24.
Bergman
,
T. L.
,
Lavigne
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
Hoboken, NJ
.
25.
White
,
F. M.
,
2006
,
Fluid Mechanics
, 6th ed.,
McGraw-Hill
,
New York
.
26.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing
,
New York
.
27.
Cheng
,
Y.
,
Lien
,
F. S.
,
Yee
,
E.
, and
Sinclair
,
R.
,
2003
, “
A Comparison of Large Eddy Simulations With a Standard k–ε Reynolds-Averaged Navier–Stokes Model for the Prediction of a Fully Developed Turbulent Flow Over a Matrix of Cubes
,”
J. Wind Eng. Ind. Aerodyn.
,
91
(
11
), pp.
1301
1328
.
28.
Lateb
,
M.
,
Masson
,
C.
,
Stathopoulos
,
T.
, and
Bédard
,
C.
,
2013
, “
Comparison of Various Types of k–ε Models for Pollutant Emissions Around a Two-Building Configuration
,”
J. Wind Eng. Ind. Aerodyn.
,
115
, pp.
9
21
.
You do not currently have access to this content.