A new method of building electro-hydraulic servo valve's thermal model is proposed. In this method, energy conservation equation of servo valve was obtained according to thermodynamics, which describes servo valve's heat conduction, heat convection, and heat radiation with other hydraulic components. Servo valve's thermal model and thermal characteristics model were built and simulated in amesim. Experiment was carried out in four working pressures ranging from 3 MPa to 12 MPa. Simulation and experimental results indicate that servo valve reaches thermal equilibrium in less than 2.5 h, and with pressure's increase, valve reaches thermal equilibrium more quickly with a higher steady temperature. Maximum and steady temperature error between simulation and experimental results are approximately 4.6 °C and 1.5 °C, and when lowering pressure, they both reduce. The temperature error can mainly result from motor's heat production in experiment, which will vanish when the whole hydraulic motor servo system is modeled. Therefore, experimental results verified the validity of valve's thermal characteristics model. The significance of this study is to provide a theoretical basis for subsequent researches of heat characteristics of other hydraulic components, which include hydraulic motor, valve block, hydraulic oil source, and so on.

References

1.
Ma
,
Q. K.
,
Wang
,
X. Y.
,
Yuan
,
F.
,
Tao
,
J. F.
, and
Liu
,
P.
,
2016
, “
Research on Feed-Forward PIDD2 Control for Hydraulic Continuous Rotation Motor Electro-Hydraulic Servo System With Long Pipeline
,”
UKACC 11th International Conference on Control
(
CONTROL
),
Belfast, UK
,
Aug. 31–Sept. 2
, pp.
1
6
.
2.
Zhao
,
J. S.
,
Shen
,
G.
,
Zhu
,
W. D.
,
Yang
,
C. F.
, and
Agrawal
,
S. K.
,
2018
, “
Force Tracking Control of an Electro-Hydraulic Control Loading System on a Flight Simulator Using Inverse Model Control and a Damping Compensator
,”
Trans. Inst. Meas. Control
,
40
(
1
), pp.
135
147
.
3.
Wang
,
B.
,
Zhao
,
W.
,
Ji
,
X.
,
Li
,
W. Z.
, and
Cheng
,
W.
,
2017
, “
Influence of Target Temperature on Mid-Infrared Direction Jamming
,”
Laser Infrared
,
47
(
4
), pp.
498
501
.
4.
Wang
,
F.
,
Li
,
Y. J.
,
Rao
,
Q. H.
, and
Tang
,
L.
,
2009
, “
Quantitative Description of Infrared Radiation Characteristics for Solid Materials Subjected to External Loading
,”
J. Central South Univ.
,
16
(
6
), pp.
1022
1027
.
5.
Wu
,
H. W.
, and
Quan
,
L.
,
2009
, “
Energy Loss Research of Load-Sensing Excavator's Hydraulic System
,”
Hydraul. Pneumatics Seals
,
6
(6), pp.
34
38
.
6.
Wen
,
D. S.
,
Zhen
,
X. S.
,
Chen
,
F.
,
Zhou
,
C.
,
Chai
,
W. C.
, and
Shang
,
X. D.
,
2017
, “
Energy Saving of Throttling Governing Circuit Constituted by Double-Stator Pump
,”
Mach. Tool Hydraul.
,
45
(13), pp.
1
4
.
7.
Wang
,
Z.
,
Shang
,
Y. X.
,
Jiao
,
Z. X.
, and
Wang
,
C. W.
,
2011
, “
Leakage Calculation and Control of Vane Swing Hydraulic Motor Based on ANSYS
,”
International Conference on Fluid Power and Mechatronics
, Beijing, China, Aug. 17–20, pp.
981
986
.
8.
Cui
,
X.
,
Dong
,
Y. L.
, and
Zhao
,
K. D.
,
2009
, “
Measurement of External Leakage of Hydraulic Servo-Motor Based on Robust Extended Kalman Filter
,”
Ninth International Conference on Electronic Measurement & Instruments
, Beijing, China, Aug. 16–19, pp.
680
684
.
9.
Sidders
,
J. A.
,
Tilley
,
D. G.
, and
Chapple
,
P. J.
,
1996
, “
Thermal-Hydraulic Performance Prediction in Fluid Power Systems
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
210
(
4
), pp.
231
242
.
10.
Kim
,
J. Y.
,
Lee
,
J. S.
,
Kim
,
H. W.
, and
Moon
,
W. S.
,
2010
, “
Estimation of the Heat Generation and Dissipation for the Hydraulic System of a Medium Size Excavator Using One Dimensional Analysis
,”
ASME
Paper No. IMECE2010-39940.
11.
Cao
,
K. Q.
,
Li
,
Y. L.
, and
Ren
,
B.
,
2013
,
Thermal Characteristics Modeling, Simulating and Designing of Modern Aircraft Hydraulic System
,
National Defense Industry Press
,
Beijing, China
.
12.
Li
,
Y. L.
,
Li
,
B. R.
,
Shen
,
Y. L.
, and
Hu
,
L. M.
,
2009
, “
Thermal-Hydraulic Modeling and Simulation of Hydraulic Servo Valve
,”
J. Syst. Simul.
,
21
(
2
), pp.
340
343
.
13.
Luo
,
Y. Y.
,
Wang
,
X. M.
,
Sun
,
W. J.
, and
Guo
,
H. J.
,
2013
, “
Analysis on Effect of Hydraulic Pipe to System Thermal Load
,”
Hydraul. Pneumatics Seals
,
9
(9), pp.
36
39
.
14.
Xu
,
L. P.
,
Xiang
,
N.
,
Nan
,
X. Q.
, and
Cui
,
Y. B.
,
2016
, “
Thermodynamic Modeling and Simulation of Closed Hydraulic System Based on AMESim
,”
Mach. Tool Hydraul.
,
44
(9), pp.
147
150
.
15.
Yan
,
J. J.
,
Ke
,
J.
,
Liu
,
H. L.
,
Zhou
,
D. H.
, and
Wang
,
G. Z.
,
2014
, “
Research on Fluid-Solid-Thermal Coupling in Temperature Field of Hydraulic Slide Valves
,”
China Mech. Eng.
,
25
(
6
), pp.
757
760
.
16.
Yan
,
J. J.
, and
Zhou
,
D. H.
,
2013
, “
Thermal Effect Analysis of Core Surface of Hydraulic Spool Valve Based on CFD Methods
,”
Mach. Tool Hydraul.
,
41
(
5
), pp.
145
149
.
17.
Zhu
,
Y. N.
,
Zhang
,
Q.
,
Chen
,
L. F.
,
Tao
,
J. F.
, and
Wang
,
X. Y.
,
2018
, “
Liquid Film Thickness Design of Cam-Rotor Vane Motor Based on Efficiency Analysis
,”
J. Shanghai Jiaotong Univ.
,
52
(
6
), pp.
715
721
.
18.
Li
,
H. R.
,
1995
,
Hydraulic Control System
,
National Defense Industry Press
,
Beijing, China
.
19.
Yang
,
S. M.
, and
Tao
,
W. S.
,
2003
,
Heat Transfer
,
Higher Education Press
,
Beijing, China
.
20.
Fu
,
Y. L.
, and
Qi
,
X. Y.
,
2011
,
LMS Imagine. LabAMESim System Model and Simulation: Reference Manual
,
Beihang University Press
,
Beijing, China
.
You do not currently have access to this content.