This paper presents a computational fluid dynamics (CFD) analysis of the air and temperature distribution in a representative railway vehicle, with the objective of evaluating passengers' thermal comfort. The CFD model developed is featuring the wagon geometry in detail including air diffusers geometry, passengers, and luminaires. A set of different scenarios are studied, covering occupancy levels, state of the doors and windows (open/closed), inlet temperature, and air diffuser design. The results show a clear influence of the air supply system and design geometry on comfort, as local velocities well above 1 m/s were obtained for the original design. A new diffuser design proposed clearly improved the velocity field distribution enhancing passengers' thermal comfort. Exhaust vents are also presenting high velocities, which are significantly reduced down to 2 m/s when windows are open. It is observed that thermal comfort is not appropriate when air inlet temperature is conditioned to 19 °C, especially for the original diffuser design.

References

1.
ASHRAE,
1981
, “
Thermal Environmental Conditions for Human Occupancy
,” American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, Georgia, ASHRAE Standard No. 55-1981.
2.
Nilsson
,
H. O.
, and
Holmér
,
I.
,
1998
, “
Comfort Climate Evaluation With Thermal Manikin Methods and Computer Simulation Models
,”
Indoor Air
,
13
(
1
), pp.
28
37
.
3.
Hamidur Rahman
,
M.
,
Sadrul Islam
,
A. K. M.
, and
Ruhul Amin
,
M.
,
2015
, “
Numerical Study of Carbon Dioxide Gas Emission From an Urban Residential Kitchen in Developing Countries
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041010
.
4.
Liu
,
T.-H.
,
Chen
,
X.-D.
,
Li
,
W.-H.
,
Xie
,
T.-Z.
, and
Chen
,
Z.-W.
,
2017
, “
Field Study on the Interior Pressure Variations in High-Speed Trains Passing Through Tunnels of Different Lengths
,”
J. Wind Eng. Ind. Aerodyn.
,
169
, pp.
54
66
.
5.
Domingo
,
J.
,
Barbero
,
R.
,
Iranzo
,
A.
,
Cuadra
,
D.
,
Servert
,
J.
, and
Marcos
,
M. A.
,
2011
, “
Analysis and Optimization of Ventilation Systems for an Underground Transport Interchange Building Under Regular and Emergency Scenarios
,”
Tunnelling Underground Space Technol.
,
26
(1), pp.
179
188
.
6.
Viegas
,
J. C.
,
2009
, “
The Use of Impulse Ventilation to Control Pollution in Underground Car Parks
,”
Int. J. Vent.
,
8
(
1
), pp.
57
74
.
7.
Yang
,
L.
,
Li
,
M.
,
Li
,
X.
, and
Tu
,
J.
,
2018
, “
The Effects of Diffuser Type on Thermal Flow and Contaminant Transport in High-Speed Train (HST) Cabins—A Numerical Study
,”
Int. J. Vent.
,
17
(
1
), pp.
48
62
.
8.
EN
,
2006
, “
Railway Applications—Air Conditioning for Urban and Suburban Rolling Stock—Part 1: Comfort Parameters
,” European Union, Brussels, Belgium, European Norm EN 14750-1:2006.
9.
Liu
,
W.
,
Mazumdar
,
S.
,
Zhang
,
Z.
,
Poussou
,
S. B.
,
Liu
,
J.
,
Lin
,
C.-H.
, and
Chen
,
Q.
,
2012
, “
State-of-the-Art Methods for Studying Air Distributions in Commercial Airliner Cabins
,”
Building Environ.
,
47
, pp.
5
12
.
10.
Lieto Vollaro
,
R.
,
2013
, “
Indoor Climate Analysis for Urban Mobility Buses: A CFD Model for the Evaluation of Thermal Comfort
,”
Int. J. Environ. Prot. Policy
,
1
, pp.
1
8
.
11.
Zhu
,
S.
,
Demokritou
,
P.
, and
Spengler
,
J.
,
2010
, “
Experimental and Numerical Investigation of Micro-Environmental Conditions in Public Transportation Buses
,”
Build. Environ.
,
45
(
10
), pp.
2077
2088
.
12.
Zhu
,
S.
,
Srebric
,
J.
,
Spengler
,
J.
, and
Demokritou
,
P.
,
2012
, “
An Advanced Numerical Model for the Assessment of Airbone Transmission of Influenza in Bus Microenvironments
,”
Build. Environ.
,
47
, pp.
67
75
.
13.
Bianco
,
V.
,
Manca
,
O.
,
Nardini
,
S.
, and
Roma
,
M.
,
2009
, “
Numerical Investigation of Transient Thermal and Fluidynamic Fields in a Executive Aircraft Cabin
,”
Appl. Therm. Eng.
,
29
(
16
), pp.
3418
3425
.
14.
Zhang
,
Z.
,
Chen
,
X.
,
Mazumdar
,
S.
,
Zhang
,
T.
, and
Chen
,
Q.
,
2009
, “
Experimental and Numerical Investigation of Airflow and Contaminant Transport in an Airliner Cabin Mockup
,”
Build. Environ.
,
44
(
1
), pp.
85
94
.
15.
Poussou
,
S.
,
Mazumdar
,
S.
,
Plesniak
,
M.
,
Sojka
,
P.
, and
Chen
,
Q.
,
2010
, “
Flow and Contaminant Transport in an Airliner Cabin Induced by a Moving Body: Model Experiments and CFD Predictions
,”
Atmos. Environ.
,
44
(
24
), pp.
2830
2839
.
16.
Yan
,
W.
,
Zhang
,
Y.
,
Sun
,
Y.
, and
Li
,
D.
,
2009
, “
Experimental and CFD Study of Unsteady Airbone Pollutant Transport Within an Aircraft Cabin Mock-Up
,”
Build. Environ.
,
44
(
1
), pp.
34
43
.
17.
Thompson
,
J. A.
,
Maidment
,
G. G.
, and
Missenden
,
J. F.
,
2006
, “
Modelling Low-Energy Cooling Strategies for Underground Railways
,”
Appl. Energy
,
83
(
10
), pp.
1152
1162
.
18.
Chow
,
W. K.
,
2002
, “
Ventilation of Enclosed Train Compartments in Hong Kong
,”
Appl. Energy
,
71
(
3
), pp.
161
170
.
19.
Suárez
,
C.
,
Iranzo
,
A.
,
Salva
,
J. A.
,
Tapia
,
E.
,
Barea
,
G.
, and
Guerra
,
J.
,
2017
, “
Parametric Investigation Using Computational Fluid Dynamics of the HVAC Air Distribution in a Railway Vehicle for Representative Weather and Operating Conditions
,”
Energies
,
10
(
8
), p.
1074
.
20.
Yan
,
Y.
,
Li
,
Yang
,
L.
, and
Tu
,
T.
,
2016
, “
Evaluation of Manikin Simplification Methods for CFD Simulations in Occupied Indoor Environments
,”
Energy Build.
,
127
, pp.
611
626
.
21.
ANSYS Inc.
,
2016
, “
Southpointe 2600 ANSYS Drive
,” ANSYS, Canonsburg, PA.
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
23.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.
You do not currently have access to this content.