Abstract

The effects of upstream injection angle on film cooling effectiveness of a turbine vane end wall with various endwall film-hole designs were examined by applying pressure-sensitive paint (PSP) measurement technique. As the leakage flow from the slot between the combustor and the turbine vane is not considered an active source to protect the vane endwall in certain engine designs, discrete cylindrical holes are implemented near the slot to create an additional controllable upstream film to cool the vane end wall. Three potential injection angles were studied: 30 deg, 40 deg, and 50 deg. To explore the optimum endwall cooling design, five different film-hole patterns were tested: axial row, cross row, cluster, midchord row, and downstream row. Experiments were conducted in a four-passage linear cascade facility in a blowdown wind tunnel at the exit isentropic Mach number of 0.5 corresponding to inlet Reynolds number of 380,000 based on turbine vane axial chord length. A freestream turbulence intensity of 19% with an integral length scale of 1.7 cm was generated at the cascade inlet plane. Detailed film cooling effectiveness for each design was analyzed and compared at the design operation conditions (coolant mass flow ratio (MFR) 1% and density ratio 1.5). The results are presented in terms of high-fidelity film effectiveness contours and laterally (spanwise) averaged effectiveness. This paper will provide the gas turbine designers valuable information on how to select the best endwall cooling pattern with minimum cooling air consumption over a range of upstream injection angle.

References

1.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME
Paper No. GT2017-63205.
2.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
3.
Ghosh
,
K.
, and
Goldstein
,
R. J.
,
2012
, “
Effect of Inlet Skew on Heat/Mass Transfer From a Simulated Turbine Blade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051042
.
4.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Trans.
,
96
(
4
), pp.
524
529
.
5.
Granser
,
D.
, and
Schulenberg
,
T.
,
1990
, “
Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud
,”
ASME
Paper No. 90-GT-95.
6.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance—Part I: Flow Field Measurements
,”
ASME
Paper No. 2000-GT-0199.
7.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance—Part II: Thermal Measurements
,”
ASME
Paper No. 2000-GT-0200.
8.
Oke
,
R.
,
Simon
,
T.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
Y. L.
, and
Chyu
,
M.
,
2001
, “
Measurements Over a Film-Cooled, Contoured Endwall With Various Coolant Injection Rates
,”
ASME
Paper No. 2001-GT-0140.
9.
Oke
,
R.
, and
Simon
,
T.
,
2002
, “
Film-Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,”
ASME
Paper No. GT2002-30169.
10.
Oke
,
R.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Vahlberg
,
R.
,
2000
, “
Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,”
ASME
Paper No. 2000-GT-0214.
11.
Zhang
,
L.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.
12.
Liu
,
G.
,
Liu
,
S.
,
Zhu
,
H.
,
Lapworth
,
B. C.
, and
Forest
,
A. E.
,
2004
, “
Endwall Heat Transfer and Film Cooling Measurements in a Turbine Cascade With Injection Upstream of Leading Edge
,”
Heat Transfer-Asian Res.
,
33
(
3
), pp.
141
152
.
13.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.
14.
Zhang
,
L.
,
Yin
,
J.
,
Liu
,
K.
, and
Moon
,
H. K.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,”
ASME
Paper No. GT2015-42541.
15.
Chowdhury
,
N. H. K.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Turbine Vane Endwall Film Cooling Study From Axial-Row Configuration With Simulated Upstream Leakage Flow
,”
ASME
Paper No. GT2017-63144.
16.
Chowdhury
,
N. H. K.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Turbine Vane Endwall Film Cooling From Cross-Row Configuration With Simulated Upstream Leakage Flow
,”
ASME
Paper No. GT2017-63145.
17.
Chowdhury
,
N. H. K.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Xu
,
H.
, and
Fox
,
M.
,
2017
, “
Film Cooling Effectiveness Comparison on Turbine Vane Endwall With Cluster Configurations Using PSP Measurement Technique
,”
ASME
Paper No. IMECE2017-72157.
18.
Foster
,
N. W.
, and
Lampard
,
D.
,
1984
, “
The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes
,”
ASME J. Eng. Power
,
102
(
3
), pp.
584
588
.
19.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1997
, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injection
,”
ASME J. Turbomach.
,
119
(
2
), pp.
352
358
.
20.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1999
, “
Effects of Hole Shape on Film Cooling With Large Angle Injection
,”
ASME
Paper No. 99-GT-165.
21.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
.
22.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2003
, “
Film Cooling Characteristics of a Single Round Hole at Various Streamwise Angles in a Crossflow—Part I: Effectiveness
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
221
235
.
23.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow—Part I: Effectiveness
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4995
5016
.
24.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
25.
Heneka
,
C.
,
Schulz
,
A.
,
Bauer
,
H. -J.
,
Heselhaus
,
A.
, and
Crawford
,
M. E.
,
2012
, “
Film Cooling Performance of Sharp Edged Diffuser Holes With Lateral Inclination
,”
ASME J. Turbomach.
,
134
(
4
), p.
041015
.
26.
Chowdhury
,
N. H. K.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration
,”
ASME J. Turbomach.
,
139
(
6
), p.
061003
.
27.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2016
, “
Full-Scale Turbine Vane Endwall Film-Cooling Effectiveness Distribution Using Pressure-Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
5
), p.
051002
.
28.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
21
.
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.