Abstract
In the present research, the thermohydraulic performance of a solar air heater having artificial roughness in the form of arc-shaped ribs with multiple gaps has been investigated experimentally and compared with that of a solar air heater having smooth absorber plate. The performance has been investigated in terms of enhancement in the Nusselt number and friction factor. Results of the present work have also been compared with previously published work. Reynolds number and arc angle (α) were varied from 3000 to 18,000 and 30 deg to 75 deg, respectively. Present roughness results in a higher rate of heat transfer from the absorber surface to air, but it also imposes a penalty in terms of the increased friction factor. Maximum enhancement in Nusselt number, friction factor, and thermohydraulic performance parameter for the roughened absorber surface is found to be 3.74, 2.69, and 2.75 times that of the smooth plate, respectively. Correlations of heat transfer and friction factor for proposed roughness have also been developed.