Abstract

The rapid development of metal 3D printing techniques has enabled the exploration of complex free-convection heat sink designs. Small free-convection heat sinks with pin-fin arrays (or novel geometries) are widely employed at different orientations in a variety of electronic devices, yet there is limited understanding of how orientation impacts their heat transfer behavior. This article characterizes the orientation-dependent performance of a small, tapered pin, free-convection heat sink (named HS17) manufactured with direct metal laser sintering for use with a thermoelectric scalp cryotherapy device for the prevention of chemotherapy-induced alopecia. A validated numerical model and custom-built free-convection test rig were used to investigate the heat sink’s performance over the orientation range of 0 deg to 135 deg. HS17 maintained relatively robust performance over the 0 deg to 90 deg range; however, the thermal resistance (Rth) at 112.5 deg and 135 deg was 6% and 11% higher compared to the 90 deg case, respectively. The heat sink design was modified to include a 22.5 deg wedge base (named HS17-W) to mitigate this performance decline, which is important to ensure safe and continued operation of the cryotherapy device. Compared to the flat base heat sink, the wedge-base design successfully reduced Rth from 11.9 K/W, 12.5 K/W, and 12.8 K/W to 11.5 K/W, 11.8 K/W, and 12.3 K/W at 90 deg, 112.5 deg, and 135 deg, respectively. These results demonstrate the effectiveness of the current proposed design to improve the performance of free-convection heat sinks at downward-facing orientations.

References

1.
Joo
,
Y.
, and
Kim
,
S. J.
,
2015
, “
Comparison of Thermal Performance Between Plate-Fin and Pin-Fin Heat Sinks in Natural Convection
,”
Int. J. Heat Mass Transf.
,
83
(
1
), pp.
345
356
. 10.1016/j.ijheatmasstransfer.2014.12.023
2.
Shamvedi
,
D.
,
McCarthy
,
O. J.
,
O’Donoghue
,
E.
,
Danilenkoff
,
C.
,
O’Leary
,
P.
, and
Raghavendra
,
R.
,
2018
, “
3D Metal Printed Heat Sinks With Longitudinally Varying Lattice Structure Sizes Using Direct Metal Laser Sintering
,”
Virtual Phys. Prototyp.
,
13
(
4
), pp.
301
310
. 10.1080/17452759.2018.1479528
3.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
. 10.1115/1.4030989
4.
Effendi
,
N. S.
, and
Kim
,
K. J.
,
2017
, “
Orientation Effects on Natural Convective Performance of Hybrid Fin Heat Sinks
,”
Appl. Therm. Eng.
,
123
(
1
), pp.
527
536
. 10.1016/j.applthermaleng.2017.05.134
5.
Al-Damook
,
A.
,
Kapur
,
N.
,
Summers
,
J. L.
, and
Thompson
,
H. M.
,
2015
, “
An Experimental and Computational Investigation of Thermal Air Flows Through Perforated Pin Heat Sinks
,”
Appl. Therm. Eng.
,
89
(
1
), pp.
365
376
. 10.1016/j.applthermaleng.2015.06.036
6.
Elshafei
,
E. A. M.
,
2010
, “
Natural Convection Heat Transfer From a Heat Sink With Hollow/Perforated Circular Pin Fins
,”
Energy
,
35
(
7
), pp.
2870
2877
. 10.1016/j.energy.2010.03.016
7.
Sahray
,
D.
,
Shmueli
,
H.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2010
, “
Study and Optimization of Horizontal-Base Pin-Fin Heat Sinks in Natural Convection and Radiation
,”
ASME J. Heat Transfer
,
132
(
1
), p.
012503
. 10.1115/1.3156791
8.
Kobus
,
C. J.
, and
Oshio
,
T.
,
2005
, “
Predicting the Thermal Performance Characteristics of Staggered Vertical Pin Fin Array Heat Sinks Under Combined Mode Radiation and Mixed Convection With Impinging Flow
,”
Int. J. Heat Mass Transf.
,
48
(
13
), pp.
2684
2696
. 10.1016/j.ijheatmasstransfer.2005.01.016
9.
Kobus
,
C. J.
, and
Oshio
,
T.
,
2005
, “
Development of a Theoretical Model for Predicting the Thermal Performance Characteristics of a Vertical Pin-Fin Array Heat Sink Under Combined Forced and Natural Convection With Impinging Flow
,”
Int. J. Heat Mass Transf.
,
48
(
6
), pp.
1053
1063
. 10.1016/j.ijheatmasstransfer.2004.09.042
10.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2016
, “
Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels
,”
ASME J. Turbomach.
,
139
(
1
), p.
011007
. 10.1115/1.4034342
11.
Wong
,
M.
,
Owen
,
I.
, and
Sutcliffe
,
C. J.
,
2009
, “
Pressure Loss and Heat Transfer Through Heat Sinks Produced by Selective Laser Melting
,”
Heat Transf. Eng.
,
30
(
13
), pp.
1068
1076
. 10.1080/01457630902922228
12.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transf.
,
75
(
1
), pp.
58
74
. 10.1016/j.ijheatmasstransfer.2014.03.037
13.
Fasano
,
M.
,
Ventola
,
L.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Ambrosio
,
E. P.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2016
, “
Passive Heat Transfer Enhancement by 3D Printed Pitot Tube Based Heat Sink
,”
Int. Commun. Heat Mass Transf.
,
74
(
1
), pp.
36
39
. 10.1016/j.icheatmasstransfer.2016.03.012
14.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2015
, “
Build Direction Effects on Additively Manufactured Channels
,”
Vol. 5A Heat Transf.
,
138
(
5
), pp.
V05AT11A034
. 10.1115/GT2015-43935
15.
Wong
,
K. K.
,
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2016
, “
Fabrication of Heat Sinks by Selective Laser Melting for Convective Heat Transfer Applications
,”
Virtual Phys. Prototyp.
,
11
(
3
), pp.
159
165
. 10.1080/17452759.2016.1211849
16.
See
,
Y. S.
, and
Leong
,
K. C.
,
2017
, “
Heat Transfer Study of 3—D Printed Air—Cooled Heat Sinks
,”
13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
Portoroz, Slovenia
,
July 17–19
.
17.
Lazarov
,
B. S.
,
Sigmund
,
O.
,
Meyer
,
K. E.
, and
Alexandersen
,
J.
,
2018
, “
Experimental Validation of Additively Manufactured Optimized Shapes for Passive Cooling
,”
Appl. Energy
,
226
(
1
), pp.
330
339
. 10.1016/j.apenergy.2018.05.106
18.
Baldry
,
M.
,
Timchenko
,
V.
, and
Menictas
,
C.
,
2019
, “
Optimal Design of a Natural Convection Heat Sink for Small Thermoelectric Cooling Modules
,”
Appl. Therm. Eng.
,
160
(
1
), pp.
114062
. 10.1016/j.applthermaleng.2019.114062
19.
Huang
,
R. T.
,
Sheu
,
W. J.
, and
Wang
,
C. C.
,
2008
, “
Orientation Effect on Natural Convective Performance of Square Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transf.
,
51
(
9–10
), pp.
2368
2376
. 10.1016/j.ijheatmasstransfer.2007.08.014
20.
Sparrow
,
E. M.
, and
Vemuri
,
S. B.
,
1986
, “
Orientation Effects on Natural Convection/Radiation Heat Transfer From Pin-Fin Arrays
,”
Int. J. Heat Mass Transf.
,
29
(
3
), pp.
359
368
. 10.1016/0017-9310(86)90206-1
21.
Zografos
,
A. I.
, and
Edward Sunderland
,
J.
,
1990
, “
Natural Convection From Pin Fin Arrays
,”
Exp. Therm. Fluid Sci.
,
3
(
4
), pp.
440
449
. 10.1016/0894-1777(90)90042-6
22.
Sertkaya
,
A. A.
,
Bilir
,
Ş
, and
Kargici
,
S.
,
2011
, “
Experimental Investigation of the Effects of Orientation Angle on Heat Transfer Performance of Pin-Finned Surfaces in Natural Convection
,”
Energy
,
36
(
3
), pp.
1513
1517
. 10.1016/j.energy.2011.01.014
23.
Alessio
,
M. E.
, and
Kaminski
,
D. A.
,
1989
, “
Natural Convection and Radiation Heat Transfer From an Array of Inclined Pin Fins
,”
ASME J. Heat Transfer
,
111
(
1
), pp.
197
199
. 10.1115/1.3250648
24.
Fisher
,
T. S.
, and
Torrance
,
K. E.
,
1998
, “
Free Convection Limits for Pin-Fin Cooling
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
633
640
. 10.1115/1.2824325
25.
Taylor
,
J.
,
1997
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
,
University Science Books
,
California, USA
.
26.
Baldry
,
M.
,
2019
,
Advanced Thermal Control for Cryotherapy Using Thermoelectric Cooling
,
UNSW Sydney
, Sydney, NSW
.
27.
Byron Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
,
2007
,
Transport Phenomena
,
John Wiley & Sons
,
New York
.
28.
Sparrow
,
E. M.
, and
Vemuri
,
S. B.
,
1985
, “
Natural Convection/Radiation Heat Transfer From Highly Populated Pin Fin Arrays
,”
ASME J. Heat Transfer
,
107
(
1
), pp.
190
197
. 10.1115/1.3247377
29.
Ledezma
,
G.
, and
Bejan
,
A.
,
1996
, “
Heat Sinks With Sloped Plate Fins in Natural and Forced Convection
,”
Int. J. Heat Mass Transf.
,
39
(
9
), pp.
1773
1783
. 10.1016/0017-9310(95)00297-9
You do not currently have access to this content.