Abstract
The thermal performance analysis of a radiator with a dissimilar shape nanoparticles, i.e., cylindrical (CNT)–platelet (graphene), spherical (Al2O3)–platelet (graphene), and spherical (Al2O3)–cylindrical (CNT) composition-based hybrid nanofluid for a coolant flowrate of 6 l/min, air velocity of 10.6 m/s, and 1.3% vol. faction of nanofluid has been studied and compared. Results revealed that a hybrid nanofluid as a coolant enhances the exergy–energy performance of the radiator. In this study, the cylindrical (CNT)–platelet (graphene) hybrid nanofluid results a decrement in the performance while the spherical (Al2O3)–platelet (graphene) hybrid nanofluid yields a better performance with coolant flowrate and air velocity. Particle shape has influenced a significant effect on the second law efficiency, exergy change, and irreversibility, which increases with an increase in air velocity, and volume fraction of hybrid nanofluid. However, the spherical (Al2O3)–platelet (graphene) hybrid nanofluid has 3.5%, 3.6%, and 1.12% higher performance index, exergy change in coolant, and second law efficiency, respectively, compared to the cylindrical (CNT)-platelet(graphene)-based hybrid nanofluid. Furthermore, results divulge that the nanoparticle shape has a notable impact on the performance of an automobile radiator. The spherical (Al2O3)–platelet (graphene) hybrid nanofluid exhibits supercilious over other shapes considered, and hence, it is more effective to use as a radiator coolant for enhancing the thermal performance.