Abstract

This paper evaluates several key approaches for their impact on the development of insensitive munition (IM) with special emphasis on the fuze. The effect of these approaches on the thermal vulnerability of a fuze is studied and evaluated by finite element analysis. These approaches include changing the proportion of the desensitizing agent, replacing the charge, changing the shell material, and adding the heat insulation coating. First, the cook-off test of a plastic-bonded explosive number-5 (PBXN-5) squib tube is simulated by abaqus and compared with the test results to validate the soundness of the proposed method. After this, comprehensive evaluations are conducted on each approach for its influence on the cook-off time. The results suggest that the weighting on the four proposed approach from high to low are insulation design, the insensitive charge, the shell material, and the proportion of the desensitizing agent, respectively.

References

1.
Watt
,
D.
,
Deschambault
,
E.
, and
Touze
,
P.
,
2006
, “
Insensitive Munitions (IM): A key Aspect of Improved Munitions Safety
,”
J. Chin. J. Energy Mater.
,
14
(
5
), pp.
323
329
.
2.
Schmitz
,
G. T.
, and
Faubion
,
B. D.
,
1980
, “ODTX Test Program,”
Mason and Hanger-Silas Mason Co., Inc.
,
Amarillo, TX
.
3.
Kent
,
R.
, and
Rat
,
M.
,
1982
, “
Explosion Thermique (Cook-Off) Des Propergols Solids
,”
Propellants Explos. Pyrotech.
,
7
(
5
), pp.
129
136
. 10.1002/prep.19820070505
4.
Pakulak
,
J. M.
,
1984
, “
USA Small-Scale Cook-off Bomb(SCB)Test
,”
Minutes of 21th Department of Defense Explosives Safety Board Explosives Safety Seminar
,
Defense Technical Information Center
,
Houston
.
5.
Zhi
,
X. Q.
Hu
,
S. Q.
,
Xiao
,
Z. H.
, Xu, S. P., and Li, Q. Q.
,
2010
, “
Effect of Sealing Conditions on Fast Cook-off Response Properties of Passive RDX
,”
Chin. J. Explos. Propellants
,
33
(
1
), pp.
31
33
.
6.
Hameed
,
A.
,
Azavedo
,
M.
, and
Pitcher
,
P.
,
2014
, “
Experimental Investigation of a Cook-Off Temperature in a Hot Barrel
,”
Def. Technol.
,
10
(
2
), pp.
86
91
. 10.1016/j.dt.2014.05.006
7.
Gerace
,
M. A.
, and
Gleeson
,
R. G.
,
1993
, “Solid Propellant Rocket Motor Case for Insensitive Munitions Requirements,” U.S. Patent No. 5,228,285.
8.
Gill
,
M.
, and
Avnon
,
I.
,
1998
, “Rocket Motor Protection Device During Slow Cook-Off Test,” U.S. Patent No. 5,813,219.
9.
Sr
,
F.
, and
E
,
I.
,
1992
, “Tailorable Roll-Bonded Insensitive Munitions Case,” U.S. Patent No. 5,170,007.
10.
Rutkowski
,
J.
,
Cirincione
,
R.
, and
Patel
,
C.
,
2010
, “
Common low-Cost Insensitive Munitions Explosive to Replace TNT and Comp B
,”
2010 Insensitive Munitions and Energetic Materials Technology Symposium
,
Munich, Germany
.
11.
Schaefer
,
R. A.
,
Hatch
,
R. L.
, and
Doll
,
D. W.
,
2006
, “Additive for Composition B and Composition B Replacements That Mitigates Slow Cook-Off Violence,” U.S. Patent No. 7,033,449.
12.
Jones
,
D. A.
, and
Parker
,
R. P.
,
1991
, “Heat Flow Calculations for The Small-Scale Cookoff Bomb Test,” Materials Research Labs Ascot Vale (Australia) No. MRL-TR-91-12.
13.
Aydemir
,
E.
, and
Ulas
,
A.
,
2011
, “
A Numerical Study on the Thermal Initiation of a Confined Explosive in 2-D Geometry
,”
J. Hazard. Mater.
,
186
(
1
), pp.
396
400
. 10.1016/j.jhazmat.2010.11.015
14.
Gillard
,
P.
, and
Longuet
,
B.
,
2013
, “
Investigation of Heat Transfer and Heterogeneous Reactions During the Slow Cook off of a Composite Propellant
,”
J. Loss Prev. Process Ind.
,
26
(
6
), pp.
1506
1514
. 10.1016/j.jlp.2013.09.005
15.
Gross
,
M. L.
,
Meredith
,
K. V.
, and
Beckstead
,
M. W.
, “
Fast Cook-off Modeling of HMX
,”
Combust. Flame
,
162
(
9
), pp.
3307
3315
. 10.1016/j.combustflame.2015.05.020
16.
Li
,
W. F.
,
Yu
,
Y. G.
,
Ye
,
R.
,
Yang
,
H. W.
,
2017
, “
Three-Dimensional Simulation of Base Bleed Unit With AP/HTPB Propellant in Fast Cook-off Conditions
,”
J. Energy Mater.
,
35
(
3
), pp.
265
275
. 10.1080/07370652.2016.1177138
17.
Yang
,
H. W.
,
Yu
,
Y. G.
,
Ye
,
R.
,
Xue
X.-C.
,
Li
W.-F.
,
2015
, “
Cook-off Test and Numerical Simulation of AP/HTPB Composite Solid Propellant
,”
J. Loss Prev. Process Ind.
,
40
, pp.
1
9
. 10.1016/j.jlp.2015.11.028
18.
Frank-Kamenetskii
,
D. A.
,
1939
, “
Calculation of Thermal Explosion Limits
,”
Acta. Phys.-Chim USSR
,
10
, p.
365
.
19.
McGuire
,
R. R.
, and
Tarver
,
C. M.
,
1981
, “
Chemical Decomposition Models for the Thermal Explosion of Confined HMX, TATB, RDX and TNT Explosives
,”
Proceedings of the 7th International Symposium on Detonation
,
Anapolis, MD, USA
.
20.
Ma
,
X.
,
Chen
,
L.
,
Lu
,
F.
, and
Wu
,
J.-Y
,
2014
, “
Calculation on Multi-Step Thermal Decomposition of HMX-and TATB-Based Composite Explosive Under Cook-off Conditions
,”
Explos. Shock Waves
,
34
(
01
), pp.
67
74
.
21.
Tang
,
X.
,
Yuan
,
J. M.
,
Liu
,
Y. C.
,
Peng
,
S.
and
Li
,
S.
,
2017
, “
Fast Cook-off Test and Numerical Simulation of JO-9C Charge of Fuse Booster
,”
J. Acad. Armored Force. Eng.
,
31
(
01
), pp.
61
65
.
22.
Tarver
,
C. M.
, and
Tran
,
T. D.
,
2004
, “
Thermal Decomposition Models for HMX-Based Plastic Bonded Explosives
,”
Combust. Flame
,
137
(
1–2
), pp.
50
62
. 10.1016/j.combustflame.2004.01.002
23.
Makeitfrom, “2024-AlCu4Mg1-3.1355-2L97-A92024-Aluminum,” https://www.makeitfrom.com/material-properties/2024-AlCu4Mg1-3.1355-2L97-A92024-Aluminum.
24.
Tarver
,
C. M.
, and
Koerner
,
J. G.
,
2007
, “
Effects of Endothermic Binders on Times to Explosion of HMX- and TATB-Based Plastic Bonded Explosives
,”
J. Energy Mater.
,
26
(
1
), pp.
1
28
. 10.1080/07370650701719170
25.
Wang
D.
,
2007
, “
Research on Processing Technology of Kevlar Fiber Reinforced Material
,”
Master's thesis
,
Nanjing University of Science and Technology
,
Nanjing, China
.
26.
27.
Ibrahim
,
M.
,
Nocentini
,
K.
,
Stipetic
,
M.
,
Dantz
,
S.
,
Caiazzo
,
F. G.
,
Sayegh
,
H.
, and
Bianco
,
L.
,
2019
, “
Multi-field and Multi-Scale Characterization of Novel Super Insulating Panels/Systems Based on Silica Aerogels: Thermal, Hydric, Mechanical, Acoustic, and Fire Performance
,”
Build. Sci.
,
151
, pp.
30
42
.
28.
Prinse
,
W. C.
,
Van't Hof
,
P. G.
,
Cheng
,
L. K.
, and Scholtes, J. H. G.,
2007
, “
High-speed Velocity Measurements on an EFI-System
,”
The 27th International Congress on High-Speed Photography and Photonics
,
Xi’an:International Society for Optics and Photonics
,
Xi’an
.
29.
Lv
,
J. J.
,
Zeng
,
Q. X.
,
Li
,
M. Y.
, and Zhou, L. C.
,
2014
, “
Threshold Impact Velocity for Detonation Initiation in High-Density TATB Explosive by Flyer
,”
Explos. Shock Waves
,
34
(
01
), pp.
125
128
.
30.
Aminov
,
Y. A.
,
Es’kov
,
N. S.
, and
Nikitenko
,
Y. R.
,
2004
, “
Modeling of Double Shock Initiation of LX-17 Explosive
,”
AIP Conf. Proc.
,
706
(
1
), pp.
913
916
. 10.1063/1.1780385
31.
Dahlberg
,
J.
, and
Gustafsson
,
B.
,
2007
, “
GUDN Propellants and the UNIFLEX 2 IM Modular Charge System
,”
Insensitive Munitions and Energetic Materials Technology Symposium
,
Miami, FL
.
32.
Powell
,
I. J.
,
2016
, “
Insensitive Munitions—Design Principles and Technology Developments
,”
Propellants Explos. Pyrotech.
,
41
(
3
), pp.
409
413
. 10.1002/prep.201500341
You do not currently have access to this content.