Abstract

Thermofluidic behaviors governing the enhanced cooling performance of the wire-woven-bulk diamond (WBD) cored brake disc in comparison with the conventional pin-finned brake disc used on heavy vehicles were characterized experimentally. For each type of brake disc, detailed internal thermofluidic data of the two rotating brake discs were obtained using transient thermochromic liquid crystal (TLC) for end-wall heat transfer and particle image velocimetry (PIV) for the inflow field. The results demonstrate that the pin-finned brake disc exhibits a circumferentially periodic curved inline-like passage flow and large dead flow regions, with strong recirculation that reduces its thermal dissipation performance. The cooling advantage of the WBD core is primarily attributed to the combination of enlarged heat transfer surface area (both end-wall and core) and greater utilization of the larger surface due to favorable fluidic behavior developed from the WBD topology. The internal WBD core has approximately three times the surface density of the pin-finned disc which, in combination with the smaller and weaker recirculation zones, leads to more effective usage of the available core surface area for thermal dissipation. The aerodynamic anisotropy of the WBD core induced by its topological anisotropy causes a globally irregular thermofluidic distribution in the brake disc.

References

1.
Limpert
,
R.
,
1975
, “
Cooling Analysis of Disc Brake Rotors
,” SAE Paper No. 751014.
2.
Limpert
,
R.
,
1975
, “
The Thermal Performance of Automotive Disc Brakes
,” SAE Paper No. 750873.
3.
Abbas
,
S. A.
,
Cubitt
,
N. J.
, and
Hooke
,
C. J.
,
1969
, “
Temperature Distributions in Disc Brakes
,”
Proc. Inst. Mech. Eng.
,
184
(
9
), pp.
185
194
.
4.
Sheridan
,
D. C.
,
Kutchey
,
J. A.
, and
Samie
,
F.
,
1988
, “
Approaches to the Thermal Modelling of Disc Brakes
,” SAE International, Technical Paper No. 880256.
5.
Palmer
,
E.
,
Mishra
,
R.
, and
Fieldhouse
,
J.
,
2008
, “
Analysis of Air Flow and Heat Dissipation From a High Performance GT Car Front Brake
,” SAE Paper No. 2008-01-0820.
6.
Abbas
,
S. A.
,
Cubitt
,
N. J.
, and
Hooke
,
C. J.
,
1972
, “
Design and Stress Analysis of No-Coning Brake Discs
,”
J. Mech. Eng. Sci.
,
14
(
4
), pp.
255
263
. 10.1243/JMES_JOUR_1972_014_033_02
7.
Mackin
,
T. J.
,
Noe
,
S. C.
,
Ball
,
K. J.
,
Bedell
,
B. C.
,
Bim-Merle
,
D. P.
,
Bingaman
,
M. C.
,
Bomleny
,
D. M.
,
Chemlir
,
G. J.
,
Clayton
,
D. B.
,
Evans
,
H. A.
,
Gau
,
R.
,
Hart
,
J. L.
,
Karney
,
J. S.
,
Kiple
,
B. P.
,
Kaluga
,
R. C.
,
Kung
,
P.
,
Law
,
A. K.
,
Lim
,
D.
,
Merema
,
R. C.
,
Miller
,
B. M.
,
Miller
,
T. R.
,
Nielson
,
T. J.
,
O’Shea
,
T. M.
,
Olson
,
M. T.
,
Padilla
,
H. A.
,
Penner
,
B. W.
,
Penny
,
C.
,
Peterson
,
R. P.
,
Polidoro
,
V. C.
,
Raghu
,
A.
,
Resor
,
B. R.
,
Robinson
,
B. J.
,
Schambach
,
D.
,
Snyder
,
B. D.
,
Tom
,
E.
,
Tschantz
,
R. R.
,
Walker
,
B. M.
,
Wasielewski
,
K. E.
,
Webb
,
T. R.
,
Wise
,
S. A.
,
Yang
,
R. S.
, and
Zimmerman
,
R. S.
,
2002
, “
Thermal Cracking in Disc Brakes
,”
Eng. Fail. Anal.
,
9
(
1
), pp.
63
76
. 10.1016/S1350-6307(00)00037-6
8.
Maronati
,
G.
,
Oberti
,
L.
, and
Ronchi
,
N.
,
2017
, “Ventilated Brake Disc,” Patent No. US20170002879A1, US Patent Application Publication.
9.
Sakamoto
,
H. J.
,
2004
, “
Heat Convection and Design of Brake Disc
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
218
(
3
), pp.
203
212
. 10.1243/0954409042389436
10.
Wallis
,
L. M.
,
2003
, “
A Comparison of Bi-Directional Disc Brake Rotor Passage Designs
,”
Ph.D. thesis
,
The University of New South Wales
,
Sydney, Australia
, pp.
283
285
.
11.
Wallis
,
L.
,
Leonardi
,
E.
,
Milton
,
B.
, and
Joseph
,
P.
,
2002
, “
Air Flow and Heat Transfer in Ventilated Disc Brake Rotors With Diamond and Tear Drop Pillars
,”
Numer. Heat Transfer, Part A
,
41
(
6–7
), pp.
643
655
. 10.1080/104077802317418269
12.
Palmer
,
E.
,
Mishra
,
R.
, and
Fieldhouse
,
J.
,
2009
, “
An Optimization Study of a Multiple Row Pin Vented Brake Disc to Promote Brake Cooling Using Computational Fluid Dynamics
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
223
(
7
), pp.
865
875
. 10.1243/09544070JAUTO1053
13.
Palmer
,
E.
,
Mishra
,
R.
, and
Fieldhouse
,
J.
,
2008
, “
A Computational Fluid Dynamic Analysis on the Effect of Front Row Pin Geometry on the Aerothermodynamic Properties of a Pin-Vented Brake Disc
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
222
(
7
), pp.
1231
1245
. 10.1243/09544070JAUTO755
14.
Johnson
,
D. A.
,
Sperandei
,
B. A.
, and
Gilbert
,
R.
,
2003
, “
Analysis of the Flow Through a Vented Automotive Brake Rotor
,”
ASME J. Fluid Eng.
,
125
(
6
), pp.
979
989
. 10.1115/1.1624426
15.
McPhee
,
A. D.
, and
Johnson
,
D. A.
,
2008
, “
Experimental Heat Transfer and Flow Analysis of a Vented Brake Rotor
,”
Int. J. Therm. Sci.
,
47
(
4
), pp.
458
467
. 10.1016/j.ijthermalsci.2007.03.006
16.
Qian
,
C.
,
2002
, “
Aerodynamic Shape Optimization Using CFD Parametric Model with Brake Cooling Application
,” SAE Int., Technical Paper No. 2002-01-0599.
17.
Mew
,
T. D.
,
Kang
,
K. J.
,
Kienhöfer
,
F. W.
, and
Kim
,
T.
,
2015
, “
Transient Thermal Response of a Highly Porous Ventilated Brake Disc
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
229
(
6
), pp.
674
683
. 10.1177/0954407014567516
18.
Yan
,
H. B.
,
Mew
,
T.
,
Lee
,
M. G.
,
Kang
,
K. J.
,
Lu
,
T. J.
,
Kienhöfer
,
F. W.
, and
Kim
,
T.
,
2015
, “
Thermofluidic Characteristics of a Porous Ventilated Brake Disk
,”
ASME J. Heat Transfer
,
137
(
2
), p.
022601
. 10.1115/1.4028864
19.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2004
, “
Fluid-Flow and End-Wall Heat Transfer Characteristics of an Ultralight Lattice-Frame Material
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1129
1140
. 10.1016/j.ijheatmasstransfer.2003.10.012
20.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2005
, “
Contribution of Vortex Structures and Flow Separation to Local and Overall Pressure and Heat Transfer Characteristics in an Ultra-lightweight Lattice Material
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
4243
4264
. 10.1016/j.ijheatmasstransfer.2005.04.026
21.
Kim
,
T.
,
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Convective Heat Dissipation With Lattice-Frame Materials
,”
Mech. Mater.
,
36
(
8
), pp.
767
780
. 10.1016/j.mechmat.2003.07.001
22.
Joo
,
J.-H.
,
Kang
,
K.-J.
,
Kim
,
T.
, and
Lu
,
T. J.
,
2011
, “
Forced Convective Heat Transfer in All Metallic Wire-Woven Bulk Kagome Sandwich Panels
,”
Int. J. Heat Mass Transfer
,
54
(
25
), pp.
5658
5662
. 10.1016/j.ijheatmasstransfer.2011.08.018
23.
Rothe
,
P. H.
, and
Johnston
,
J. P.
,
1976
, “
Effects of System Rotation on the Performance of Two-Dimensional Diffusers
,”
ASME J. Fluid Eng.
,
98
(
3
), pp.
422
429
. 10.1115/1.3448347
24.
Lee
,
M.-G.
,
Ko
,
G.-D.
,
Song
,
J.
, and
Kang
,
K.-J.
,
2012
, “
Compressive Characteristics of a Wire-Woven Cellular Metal
,”
Mater. Sci. Eng. A
,
539
, pp.
185
193
. 10.1016/j.msea.2012.01.079
25.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Bosch
,
G.
,
1991
, “
Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement
,”
ASME J. Turbomach.
,
113
(
1
), pp.
52
59
. 10.1115/1.2927737
26.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Lutum
,
E.
,
2007
, “
Advanced Evaluation of Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
221
(
6
), pp.
793
801
. 10.1243/09576509JPE464
27.
Steurer
,
A.
,
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Retzko
,
S.
,
2019
, “
Application of the Transient Heat Transfer Measurement Technique Using Thermochromic Liquid Crystals in a Network Configuration With Intersecting Circular Passages
,”
ASME J. Turbomach.
,
141
(
5
), p.
051010
. 10.1115/1.4041807
28.
Baughn
,
J. W.
,
Anderson
,
M. R.
,
Mayhew
,
J. E.
, and
Wolf
,
J. D.
,
1999
, “
Hysteresis of Thermochromic Liquid Crystal Temperature Measurement Based on Hue
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
1067
1072
. 10.1115/1.2826057
29.
Atkins
,
M. D.
,
Kienhӧfer
,
F. W.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2020
, “
Local Heat Transfer Distributions Within a Rotating Pin-Finned Brake Disc
,”
ASME J. Heat Transfer
,
142
(
11
), pp.
112101
. 10.1115/1.4047836
30.
Atkins
,
M. D.
,
Kienhöfer
,
F. W.
, and
Kim
,
T.
,
2019
, “
Flow Behavior in Radial Vane Disk Brake Rotors at Low Rotational Speeds
,”
ASME J. Fluid Eng.
,
141
(
8
), p.
081105
. 10.1115/1.4042470
31.
Mills
,
A. F.
,
1995
,
Basic Heat and Mass Transfer
,
Irwin
,
Chicago, IL
, p.
147
.
32.
Kays
,
W. H.
,
1966
,
Convective Heat and Mass Transfer
,
McGraw-Hill Book Company
,
New York
, pp.
133
137
.
33.
Myers
,
G. E.
,
1987
,
Analytical Methods in Conduction Heat Transfer
,
Genium Publishing Corp.
,
New York
, pp.
153
163
.
34.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow Concepts and Applications
,
Cambridge University Press
,
Cambridge
, pp.
368
378
.
35.
Wernet
,
M. P.
,
2000
, “
Application of DPIV to Study Both Steady State and Transient Turbomachinary Flows
,”
Opt. Laser Technol.
,
32
(
7–8
), pp.
497
525
. 10.1016/S0030-3992(00)00090-6
36.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
Cambridge
, pp.
441
450
.
37.
Coleman
,
H. W.
, and
Steel
,
W. G.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers
, 2nd ed.,
John Wiley & Sons, Inc.
,
New York
, pp.
10, 38–84, 202–213
.
38.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J Fluid Eng.
,
104
(
2
), pp.
250
258
. 10.1115/1.3241818
39.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
40.
Gillespie
,
D. R. H.
,
1996
, “
Intricate Internal Cooling Systems for Gas Turbine Blading
,”
D.Phil. thesis
,
University of Oxford
,
Oxford
.
41.
Westerweel
,
J.
,
1997
, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1379
1392
. 10.1088/0957-0233/8/12/002
42.
Westerweel
,
J.
,
2000
, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
Suppl.1
), pp.
S003
S012
.
43.
Westerweel
,
J.
,
2008
, “
On Velocity Gradients in PIV Interrogation
,”
Exp. Fluids
,
44
, pp.
831
842
. 10.1007/s00348-007-0439-3
44.
Sisson
,
A. E.
,
1978
, “
Thermal Analysis of Vented Brake Rotors
,” SAE International, Technical Paper No. 780352.
45.
Daudi
,
A. R.
,
1998
, “
Hayes High Airflow Design Rotor for Improved Thermal Cooling and Coning
,” SAE International, Technical Paper No. 982248.
46.
Ower
,
E.
, and
Pankhurst
,
R. C.
,
1966
,
The Measurement of Air Flow
,
Pergamon Press
,
Oxford
, p.
204
.
47.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
,
Springer
,
Heidelberg
, pp.
18–23, 581 39–48. 579, 580
.
48.
Parish
,
D.
, and
MacManus
,
D. G.
,
2005
, “
Aerodynamic Investigations of Ventilated Brake Discs
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
219
(
7
), pp.
471
486
. 10.1243/095440705X11121
49.
Barigozzi
,
G.
,
Cossali
,
G. E.
,
Perdichizzi
,
A.
,
Boden and
,
A.
, and
Paccchiana
,
P.
,
2002
, “
Experimental Investigation of the Mean and Turbulent Flow Characteristics at the Exit of Automotive Vented Brake Discs
,” SAE Paper No. 2002-01-2590.
50.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
, p.
654
.
You do not currently have access to this content.