Abstract

Personal mobility devices have drawn growing attention to relieve the congestion of traffic and air pollution. The efficiency of electric motors is significant in terms of energy utilization, driving range, and lifetime of the devices. In this study, a brushless direct-current (BLDC) motor is numerically investigated to maximize the system efficiency. The inevitable energy losses in the motor are evaluated using heat sources generated in the motor components. The resulting copper and iron losses generate heat and decrease the motor efficiency. With these, the developed three-dimensional numerical model accurately predicts the temperature variations of the motor components in accordance with the experimental results. Numerical simulations are conducted by supplying air flow at a rate of 0 to 40 l/min. The results show that the decreased temperature at copper windings improves the efficiency of the motor as more air flowrate is supplied. Nonetheless, after the temperature at the copper windings reaches 42.5 °C at an air flow of 30 l/min, the temperature remains constant despite additional increase in the air flow. Through a comparison between the improved electrical work by cooling and the consumed energy to supply the air flowrate, the maximum efficiency of the air-cooled BLDC is found to be 86.3% with an optimal air flowrate of 30 l/min.

References

1.
Andwari
,
A. M.
,
Pesiridis
,
A.
,
Rajoo
,
S.
,
Martinez-Botas
,
R.
, and
Esfahanian
,
V.
,
2017
, “
A Review of Battery Electric Vehicle Technology and Readiness Levels
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
414
430
. 10.1016/j.rser.2017.03.138
2.
Park
,
H.
,
2015
, “
Numerical Simulations of a Full-Scale Polymer Electrolyte Fuel Cell With Analyzing Systematic Performance in an Automotive Application
,”
Energy Convers. Manage.
,
103
, pp.
623
638
. 10.1016/j.enconman.2015.07.011
3.
Park
,
H.
,
2014
, “
Effect of the Hydrophilic and Hydrophobic Characteristics of the Gas Diffusion Medium on Polymer Electrolyte Fuel Cell Performance Under Non-Humidification Condition
,”
Energy Convers. Manage.
,
81
, pp.
220
230
. 10.1016/j.enconman.2014.02.029
4.
Foley
,
A.
,
Tyther
,
B.
,
Calnan
,
P.
, and
Gallachóir
,
,
2013
, “
Impacts of Electric Vehicle Charging Under Electricity Market Operations
,”
Appl. Energy
,
101
, pp.
93
102
. 10.1016/j.apenergy.2012.06.052
5.
Santucci
,
M.
,
Pieve
,
M.
, and
Pierini
,
M.
,
2016
, “
Electric L-Category Vehicles for Smart Urban Mobility
,”
Transp. Res. Proc.
,
14
, pp.
3651
3660
. 10.1016/j.trpro.2016.05.433
6.
Park
,
H.
,
2013
, “
A Design of Air Flow Configuration for Cooling Lithium Ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
. 10.1016/j.jpowsour.2013.03.102
7.
Salehifar
,
M.
, and
Moreno-Equilaz
,
M.
,
2016
, “
Fault Diagnosis and Fault-Tolerant Finite Control Set-Model Predictive Control of a Multiphase Voltage-Source Inverter Supplying BLDC Motor
,”
ISA Trans.
,
60
, pp.
143
155
. 10.1016/j.isatra.2015.10.007
8.
Riba
,
J.-R.
,
López-Torres
,
C.
,
Romeral
,
L.
, and
Garcia
,
A.
,
2016
, “
Rare-Earth-Free Propulsion Motors for Electric Vehicles: A Technology Review
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
367
379
. 10.1016/j.rser.2015.12.121
9.
Urresty
,
J.-C.
,
Riba
,
J.-R.
,
Delgado
,
M.
, and
Romeral
,
L.
,
2012
, “
Detection of Demagnetization Faults in Surface-Mounted Permanent Magnet Synchronous Motors by Means of the Zero-Sequence Voltage Component
,”
IEEE Trans. Energy Conv.
,
27
(
1
), pp.
42
51
. 10.1109/TEC.2011.2176127
10.
Kim
,
M.-S.
,
Lee
,
K.-S.
, and
Um
,
S.
,
2009
, “
Numerical Investigation and Optimization of the Thermal Performance of a Brushless DC Motor
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1589
1599
. 10.1016/j.ijheatmasstransfer.2008.07.040
11.
Larminie
,
J.
, and
Lowry
,
J.
,
2012
,
Electric Vehicle Technology Explained
, 2nd ed.,
John Wiley & Sons
,
NY
.
12.
Andreas
,
J. C.
,
1982
,
Energy-Efficient Electric Motors: Selection and Application
,
Taylor and Francis
,
UK
.
13.
Grabowski
,
M.
,
Urbaniec
,
K.
,
Wernik
,
J.
, and
Wołosz
,
K. J.
,
2016
, “
Numerical Simulation and Experimental Verification of Heat Transfer From a Finned Housing of an Electric Motor
,”
Energy Convers. Manage.
,
125
, pp.
91
96
. 10.1016/j.enconman.2016.05.038
14.
Putra
,
N.
, and
Ariantara
,
B.
,
2017
, “
Electric Motor Thermal Management System Using L-Shaped Flat Heat Pipes
,”
Appl. Therm. Eng.
,
126
, pp.
1156
1163
. 10.1016/j.applthermaleng.2017.01.090
15.
Kim
,
C.
,
Lee
,
K.-S.
, and
Yook
,
S.-J.
,
2016
, “
Effect of Air-Gap Fans on Cooling of Windings in a Large-Capacity, High-Speed Induction Motor
,”
Appl. Therm. Eng.
,
100
, pp.
658
667
. 10.1016/j.applthermaleng.2016.02.077
16.
Lee
,
K.-H.
,
Cha
,
H.-R.
, and
Kim
,
Y.-B.
,
2016
, “
Development of an Interior Permanent Magnet Motor Through Rotor Cooling for Electric Vehicles
,”
Appl. Therm. Eng.
,
95
, pp.
348
356
. 10.1016/j.applthermaleng.2015.11.022
17.
Davin
,
T.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Yu
,
R.
,
2015
, “
Experimental Study of Oil Cooling Systems for Electric Motors
,”
Appl. Therm. Eng.
,
75
, pp.
1
13
. 10.1016/j.applthermaleng.2014.10.060
18.
Lim
,
D. H.
, and
Kim
,
S. C.
,
2014
, “
Thermal Performance of Oil Spray Cooling System for In-Wheel Motor in Electric Vehicles
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
577
587
. 10.1016/j.applthermaleng.2013.11.057
19.
Wrobel
,
R.
,
Mellor
,
P. H.
,
McNeill
,
N.
, and
Staton
,
D. A.
,
2010
, “
Thermal Performance of an Open-Slot Modular-Wound Machine With External Rotor
,”
IEEE Trans. Energy Conv.
,
25
(
2
), pp.
403
411
. 10.1109/TEC.2010.2047041
20.
Sobolı´k
,
V.
,
Izrar
,
B.
,
Lusseyran
,
F.
, and
Skali
,
S.
,
2000
, “
Interaction Between the Ekman Layer and the Couette–Taylor Instability
,”
Int. J. Heat Mass Transfer
,
43
(
24
), pp.
4381
4393
. 10.1016/S0017-9310(00)00067-3
21.
COMSOL Multiphysics (R)
,
2018
, “COMSOL Multiphysics® v. 5.3,” COMSOL AB, Stockholm, Sweden.
22.
Kwon
,
H.
,
Lee
,
W.-S.
,
Kim
,
G.-T.
, and
Park
,
H.
,
2016
, “
Thermal Characteristics of 600 W Brushless DC Motor Under Axial Loading Condition
,”
J. Korean Soc. Precis. Eng.
,
33
(
12
), pp.
999
1005
. 10.7736/KSPE.2016.33.12.999
23.
Schützhold
,
J.
, and
Hofmann
,
W.
,
2013
, “
Analysis of the Temperature Dependence of Losses in Electrical Machines
,”
2013 IEEE Energy Conversion Congress and Exposition
,
Denver, CO
,
Sept. 15–19
, pp.
3159
3165
.
You do not currently have access to this content.