Abstract

A new analytical method for the modeling of the thermal contact resistance of ball screws considering the load distribution of balls is proposed in this research. The load on balls is analyzed by the force analysis of ball screws, and then, the thermal contact resistance is obtained by the minimum excess principle and Majumdar–Bhushan (MB) fractal theory. The proposed method is validated by experimental results. The comparison with experimental and former results indicates that it is an effective method to evaluate the thermal contact resistance of ball screws. On that basis, effects of axial load, axial pretension, and geometry error of balls are discussed. It is concluded that the thermal contact resistance of ball screws increases along with axial load increase. The load on balls all decreases with axial pretension increase, and the thermal contact resistance of ball screws decreases with the axial pretension increase as well. When the axial load is applied on the nut in an axial-pretension ball screw, the load distribution in Nut A or B becomes less homogenized when the nut moves from nut position parameter ξ = 0 to 1. When the nut moves to ξ = 0.25, the thermal contact resistance will reach a minimum value, and it gets a maximum value at the nut position ξ = 1. The interval range of load and thermal contact resistance are obtained via uncertain analysis. It is concluded that the geometry error has much greater effects on the balls far away from the spacer.

References

1.
Ramesh
,
R.
,
Mannan
,
M.
, and
Poo
,
A.
,
2000
, “
Error Compensation in Machine Tools—A Review Part II: Thermal Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1257
1284
. 10.1016/S0890-6955(00)00010-9
2.
Degroot
,
C.
,
Gateman
,
D.
, and
Straatman
,
A.
,
2010
, “
The Effect of Thermal Contact Resistance at Porous-Solid Interfaces in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
132
(
4
), p.
041007
. 10.1115/1.4002724
3.
Jang
,
Y.
,
2005
, “
Effects of Thermal Contact Resistance on Transient Thermoelastic Contacts for an Elastic Foundation
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
972
977
. 10.1115/1.2042485
4.
Abdulhay
,
B.
,
Bourouga
,
B.
,
Alzetto
,
F.
, and
Challita
,
C.
,
2014
, “
Development of an Experimental Procedure for Thermal Contact Resistance Estimation at the Glass/Metal Contact Interface
,”
ASME J. Thermal Sci. Eng. Appl.
,
6
(
2
), p.
021006
. 10.1115/1.4025568
5.
Toebben
,
D.
,
Graaf
,
X.
, and
Luczynski
,
P.
,
2019
, “
Test Rig for Applied Experimental Investigations of the Thermal Contact Resistance at the Blade-Rotor-Connection in a Steam Turbine
,”
ASME J. Turbomach.
,
141
(
2
), p.
021007
. 10.1115/1.4041748
6.
Cousineau
,
J.
,
Bennion
,
K.
, and
Chieduko
,
V.
,
2018
, “
Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading
,”
ASME J. Thermal Sci. Eng. Appl.
,
10
(
4
), p.
041016
. 10.1115/1.4039459
7.
Alkhwaji
,
A.
,
Vick
,
B.
, and
Diller
,
T.
,
2012
, “
New Mathematical Model to Estimate Tissue Blood Perfusion, Thermal Contact Resistance and Core Temperature
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081004
. 10.1115/1.4007093
8.
Fukuoka
,
T.
, and
Nomura
,
M.
,
2013
, “
Evaluation of Thermal Contact Resistance at the Interface of Dissimilar Materials
,”
ASME J. Pressure Vessel. Technol.
,
135
(
2
), p.
021403
. 10.1115/1.4007958
9.
Bahrami
,
M.
,
Culham
,
J.
, and
Yovanovich
,
M.
,
2004
, “
Modeling Thermal Contact Resistance: A Scale Analysis Approach
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
896
905
. 10.1115/1.1795238
10.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1995
, “
A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces
,”
J. Tribol.
,
117
(
2
), pp.
203
214
. 10.1115/1.2831227
11.
Artde
,
D.
,
2010
, “
Multifractal Spectra of INGaN/GaN Self-Assembled Quantum Dots Films
,”
J. Nanotechnol. Eng. Med.
,
1
(
3
), p.
031002
. 10.1115/1.4001789
12.
Michopoulos
,
J.
, and
Iliopoulos
,
A.
,
2013
, “
Complete High Dimensional Inverse Characterization of Fractal Surfaces and Volumes
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
1
), p.
011001
. 10.1115/1.4007987
13.
Willner
,
K.
,
2004
, “
Elasto-Plastic Normal Contact of Three-Dimensional Fractal Surfaces Using Halfspace Theory
,”
J. Tribol.
,
126
(
1
), pp.
28
33
. 10.1115/1.1631019
14.
Nirala
,
H.
, and
Agraval
,
A.
,
2018
, “
Fractal Geometry Rooted Incremental Toolpath for Incremental Sheet Forming
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021005
. 10.1115/1.4037237
15.
Liu
,
J.
,
Ma
,
C.
,
Wang
,
S.
,
Wang
,
S.
,
Yang
,
B.
, and
Shi
,
H.
,
2019
, “
Thermal Boundary Condition Optimization of Ball Screw Feed Drive System Based on Response Surface Analysis
,”
Mech. Syst. Signal Process.
,
121
, pp.
471
495
. 10.1016/j.ymssp.2018.11.042
16.
Mei
,
X.
,
Tsutsumi
,
M.
, and
Tao
,
T.
,
2003
, “
Study on the Load Distribution of Ball Screws With Errors
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1257
1269
. 10.1016/S0094-114X(03)00070-3
17.
Zhen
,
N.
, and
An
,
Q.
,
2018
, “
Analysis of Stress and Fatigue Life of Ball Screw With Considering the Dimension Errors of Balls
,”
Int. J. Mech. Sci.
,
137
, pp.
68
76
. 10.1016/j.ijmecsci.2017.12.038
18.
Lin
,
B.
,
Okwudire
,
C.
, and
Wou
,
J.
,
2018
, “
Low Order Static Load Distribution Model for Ball Screw Mechanisms Including Effects of Lateral Deformation and Geometric Errors
,”
ASME J. Mech. Des.
,
140
(
2
), p.
022301
. 10.1115/1.4038071
19.
Lin
,
B.
,
Duan
,
M.
, and
Okwudire
,
C.
,
2018
, “
Analytical and Low-Order Numerical Modeling of Ball-to-Ball Contact Friction in Linear Ball Bearings and Ball Screws
,”
J. Tribol.
,
141
(
7
), p.
071401
. 10.1115/1.4043630
20.
Gao
,
X. S.
,
Wang
,
M.
, and
Liu
,
X. B.
,
2019
, “
Modeling and Application of Thermal Contact Resistance of Ball Screws
,”
J. Cent. South Univ.
,
26
(
1
), pp.
168
183
. 10.1007/s11771-019-3991-0
21.
Wang
,
W. Z.
,
2010
,
The Contact Deformation Research of Ball Screw Pair and Temperature Field Analysis of its Drive System
,
Northeastern University
,
Shenyang, China
.
22.
Liu
,
S. B.
, and
Wang
,
Q.
,
2002
, “
Study Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
,
124
(
1
), pp.
36
45
. 10.1115/1.1401017
23.
Liu
,
Z. F.
,
Pan
,
M. H.
,
Zhang
,
A. P.
,
Zhao
,
Y. S.
,
Yang
,
Y.
, and
Ma
,
C. Y.
,
2015
, “
Thermal Characteristic Analysis of High-Speed Motorized Spindle System Based on Thermal Contact Resistance and Thermal-Conduction Resistance
,”
Int. J. Adv. Manuf. Tech.
,
76
(
9–12
), pp.
1913
1926
. 10.1007/s00170-014-6350-1
24.
Kong
,
D. S.
,
Wang
,
M.
, and
Gao
,
X. S.
,
2017
, “
Theoretical and Experimental Analysis of Drag Torque for Accelerated Motion of Ball Screw Mechanism
,”
Adv. Mech. Eng.
,
9
(
12
), pp.
1
13
. 10.1177/1687814017743112
25.
Xiao
,
L.
,
2016
,
The Modeling and Simulation Research on Comprehensive Performance of Hollow Ball-Screw Feed System
,
Huazhong University of Technology
,
Wuhan
.
26.
Hu
,
J. Z.
,
Wang
,
M.
,
Gao
,
X. S.
, and
Zan
,
T.
,
2014
, “
Axial Contact Stiffness Analysis of Position Preloaded Ball Screw Mechanism
,”
Chin. J. Mech. Eng.
,
50
(
7
), pp.
60
69
. 10.3901/JME.2014.07.060
27.
Li
,
Q.
,
Qiu
,
Z. P.
, and
Zhang
,
X. D.
,
2015
, “
Static Response Analysis of Structures With Interval Parameters Using the Second-Order Taylor Series Expansion and the DCA for QB
,”
Acta Mech. Sinica
,
31
(
6
), pp.
845
854
. 10.1007/s10409-015-0501-y
You do not currently have access to this content.