Abstract

For the direct contact ice slurry production system, the obstacles of ice blockage in the nozzle, enormous refrigerant charge, and refrigerant-water separation restrict its commercial application. In this paper, a novel direct contact ice slurry production system is proposed to overcome these obstacles. In this novel system, the horizontal PVC pipe with the spiral nozzle is designed as a direct contact ice slurry generator to avoid ice blockage in the nozzle. The two-phase RC318 is utilized as the system refrigerant. In order to investigate the ice production performance of this novel system, the effects of compressor rotational speed, internal water flowrate, and initial system pressure on ice production performance are experimentally studied, and a lump model is established. The results show that the ice production performance is mainly affected by the compressor rotational speed, but scarcely affected by the internal water flowrate. However, large ice blocks are formed at small internal water flowrate. Besides, the lump model is considered to be able to predict the water temperature. Furthermore, the sinking of the liquid refrigerant exits under the higher initial system pressure, but it can be avoided by reducing the initial system pressure.

References

1.
Karim
,
M. A.
,
2011
, “
Experimental Investigation of a Stratified Chilled-Water Thermal Storage System
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
1853
1860
. 10.1016/j.applthermaleng.2010.12.019
2.
Tian
,
Q. Q.
,
He
,
G. G.
,
Wang
,
H.
, and
Cai
,
D. H.
,
2014
, “
Simulation on Transportation Safety of Ice Slurry in Ice Cooling System of Buildings
,”
Energy Build.
,
72
(
1
), pp.
262
270
. 10.1016/j.enbuild.2013.12.033
3.
Kiatsiriroat
,
T.
,
Vithayasai
,
S.
,
Vorayos
,
N.
,
Nuntaphan
,
A.
, and
Vorayos
,
N.
,
2003
, “
Heat Transfer Prediction for a Direct Contact Ice Thermal Energy Storage
,”
Energy Convers. Manage.
,
44
(
4
), pp.
497
508
. 10.1016/S0196-8904(02)00077-8
4.
Abhishek
,
A.
,
Kumar
,
B.
,
Kim
,
M. H.
,
Lee
,
Y. T.
,
Chung
,
J. D.
,
Kim
,
S. T.
,
Kim
,
T.
,
Lee
,
C.
, and
Lee
,
K.
,
2019
, “
Comparison of the Performance of Ice-on-Coil LTES Tanks With Horizontal and Vertical Tubes
,”
Energy Build.
,
183
(
1
), pp.
45
53
. 10.1016/j.enbuild.2018.10.034
5.
Fumoto
,
K.
,
Sato
,
T.
,
Kawanami
,
T.
, and
Inamura
,
T.
,
2016
, “
Ice Slurry Generation for Direct Contact Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
021007
. 10.1115/1.4031923
6.
Singh
,
R.
, and
Kachhwaha
,
S. S.
,
2016
, “
Heat Transfer and Pressure Drop Analysis of Chilled Water and Ice Slurry in a Plate Heat Exchanger
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), p.
011020
. 10.1115/1.4030738
7.
Wang
,
H.
,
He
,
G. G.
, and
Feng
,
R. Z.
,
2014
, “
An Effective Method for Preventing Ice-Blockage in Dynamic Generation System With Supercooling Water
,”
Int. J. Refrig.
,
46
(
1
), pp.
114
122
. 10.1016/j.ijrefrig.2014.05.010
8.
Liu
,
X.
,
Li
,
Y. L.
,
Zhuang
,
K. Y.
,
Fu
,
R. S.
,
Lin
,
S.
, and
Li
,
X. L.
,
2019
, “
Performance Study and Efficiency Improvement of Ice Slurry Production by Scraped-Surface Method
,”
Appl. Sci.
,
9
(
1
), p.
74
. 10.3390/app9010074
9.
Zhang
,
X. J.
,
Zheng
,
K. Q.
,
Wang
,
L. S.
,
Wang
,
W.
,
Jiang
,
M.
, and
Zhao
,
S.-Y.
,
2013
, “
Analysis of Ice Slurry Production by Direct Contact Heat Transfer of Air and Water Solution
,”
J. Zhejiang Univ., Sci., A
,
14
(
8
), pp.
583
588
. 10.1631/jzus.A1300171
10.
Stowasser
,
W. F.
, and
Miller
,
K. A.
,
1972
, “
Water Cooling Method and Apparatus Employing Liquid Nitrogen
,” U.S. Patent No. 3,672,182.
11.
Dai
,
Q.
,
Fang
,
Y.
, and
Fan
,
J. B.
,
2006
, “
Study on Heat Transfer Characteristic and Influence Factor of Direct Contact Ice Slurry Thermal Storage Test
,”
Fluid Mach.
,
34
(
10
), pp.
75
78
.
12.
Peng
,
Z. B.
,
Yuan
,
Z. L.
,
Liang
,
K. F.
, and
Cai
,
J.
,
2008
, “
Ice Slurry Formation in a Co-Current Liquid-Liquid Flow
,”
Chin. J. Chem. Eng.
,
16
(
4
), pp.
552
557
. 10.1016/S1004-9541(08)60120-2
13.
Zhang
,
X. J.
,
Tian
,
X. J.
,
Zheng
,
K. Q.
, and
Qiu
,
L. M.
,
2010
, “
Research on the Ice Slurry Generator Using the Direct Contact Heat Transfer of Gas and Water Solution
,”
J. Eng. Thermophys.
,
31
(
12
), pp.
1997
2000
.
14.
Xie
,
C. G.
,
Zhang
,
L. P.
,
Liu
,
Y. H.
,
Lv
,
Q. C.
,
Ruan
,
G. L.
, and
Hosseini
,
S. S.
,
2017
, “
A Direct Contact Type Ice Generator for Seawater Freezing Desalination Using LNG Cold Energy
,”
Desalination
,
435
(
1
), pp.
293
300
. 10.1016/j.desal.2017.04.002
15.
Thongwik
,
S.
,
Vorayos
,
N.
,
Kiatsiriroat
,
T.
, and
Nuntaphan
,
A.
,
2008
, “
Thermal Analysis of Slurry Ice Production System Using Direct Contact Heat Transfer of Carbon Dioxide and Water Mixture
,”
Int. Commun. Heat Mass Transfer
,
35
(
6
), pp.
756
761
. 10.1016/j.icheatmasstransfer.2008.02.007
16.
Yin
,
S. W.
,
Li
,
H. K.
,
Jia
,
Z. X.
,
Wang
,
L.
, and
Tong
,
L. G.
,
2017
, “
Experimental Study on Rapid Preparation of Ice Storage Applications
,”
Energy Storage Sci. Technol.
,
6
(
4
), pp.
701
707
.
17.
Hawlader
,
M. N. A.
, and
Wahed
,
M. A.
,
2009
, “
Analyses of Ice Slurry Formation Using Direct Contact Heat Transfer
,”
Appl. Energy
,
86
(
7–8
), pp.
1170
1178
. 10.1016/j.apenergy.2008.11.003
18.
Wahed
,
M. A.
, and
Hawlader
,
M. N. A.
,
2008
, “
An Analysis of a Direct Contact Ice Slurry Generator
,”
Proceedings of the 2008 ASME Summer Heat Transfer Conference
,
Jacksonville, FL
,
Aug. 10–14
, Paper No. HT2008-56173, pp.
1
9
.
19.
Wijeysundera
,
N. E.
,
Hawlader
,
M. N. A.
,
Andy
,
C. W. B.
, and
Kamal Hossain
,
M.
,
2004
, “
Ice-Slurry Production Using Direct Contact Heat Transfer
,”
Int. J. Refrig.
,
27
(
5
), pp.
511
519
. 10.1016/j.ijrefrig.2004.03.007
20.
Isobe
,
F.
, and
Mori
,
Y. H.
,
1993
, “
Formation of Gas Hydrate or Ice by Direct-Contact Evaporation of CFC Alternatives
,”
Int. J. Refrig.
,
15
(
3
), pp.
137
142
. 10.1016/0140-7007(92)90003-D
21.
Hu
,
T.
,
Guan
,
H. F.
,
Dong
,
K. J.
, and
Luo
,
W. M.
,
2017
, “
Performance Analysis of a Novel Ice Slurry Generation System
,”
Heating Vent. Air Cond.
,
47
(
4
), pp.
87
91
.
22.
Baqir
,
A. S.
,
Mahood
,
H. B.
,
Campbell
,
A. N.
, and
Griffiths
,
A. J.
,
2016
, “
Measuring the Average Volumetric Heat Transfer Coefficient of a Liquid–Liquid–Vapour Direct Contact Heat Exchanger
,”
Appl. Therm. Eng.
,
103
(
1
), pp.
47
55
. 10.1016/j.applthermaleng.2016.04.067
23.
Peng
,
Z.
,
Yiping
,
W.
,
Cuili
,
G.
, and
Kun
,
W.
,
2001
, “
Heat Transfer in Gas–Liquid–Liquid Three-Phase Direct-Contact Exchanger
,”
Chem. Eng. J.
,
84
(
3
), pp.
381
388
. 10.1016/S1385-8947(01)00131-0
24.
Ozone Secretariat
,
2018
,
Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer
,
United Nations Environment Programme
, https://ozone.unep.org/sites/default/files/MP_handbook-english-2018.pdf
25.
Cong
,
H. F.
,
Li
,
X. G.
,
Li
,
Z. J.
,
Li
,
H.
, and
Gao
,
X.
,
2016
, “
Combination of Spiral Nozzle and Column Tray Leading to a New Direction on the Distillation Equipment Innovation
,”
Sep. Purif. Technol.
,
158
(
1
), pp.
293
301
. 10.1016/j.seppur.2015.12.034
26.
Tchanche
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
. 10.1016/j.applthermaleng.2008.12.025
You do not currently have access to this content.