Abstract

The flow of alumina–water nanofluid across heated circular tubes arranged in inline and staggered arrays in a heat exchanger has been studied numerically using the finite volume method (FVM). For calculating the nanofluid’s thermophysical properties such as effective thermal conductivity and effective viscosity, Corcione’s correlations are utilized. Corcione’s correlations consider nanoparticles size, their Brownian motion, and operating temperature while calculating these effective properties of nanofluids. The impact of three parameters on heat transfer characteristics across inline and staggered arrays of heated circular cylinders has been examined. These parameters are nanoparticle diameter dp, which is varied between 10 nm and 50 nm, nanoparticle volume fraction ɸ varying from 0.01 to 0.05, and Reynolds number Re ranging from 10 to 200. It is observed that heat transfer augmentation across both inline and staggered arrays occurs when nanoparticle concentration is increased and smaller diameter nanoparticles are used. Mean Nusselt number NuM is increased by 31% when ɸ is increased from 0.01 to 0.05 at Re = 200 and dp = 10 nm in an inline array and by 25% in a staggered array. NuM is enhanced by 20% for the inline array and 16% for the staggering array when dp decreases from 50 nm to 10 nm at Re = 200 and ɸ = 0.05. At any given value of dp, ɸ, and Re, the mean Nusselt number is always higher for staggered array in comparison with the inline array. The results reported in the present study can be utilized for the optimal design of various heat exchange systems under the given operating conditions. The present results are extensively validated with the available experimental/numerical studies.

References

1.
Wung
,
T. S.
, and
Chen
,
C. J.
,
1989
, “
Finite Analytic Solution of Convective Heat Transfer for Tube Arrays in Crossflow: Part I-Heat Transfer Analysis
,”
ASME J. Heat Transf.
,
111
(
3
), pp.
633
640
. 10.1115/1.3250729
2.
Wang
,
C. Y.
,
1999
, “
Longitudinal Flow Past Cylinders Arranged in a Triangular Array
,”
Appl. Math. Model.
,
23
(
3
), pp.
219
230
. 10.1016/S0307-904X(98)10075-6
3.
Eidsath
,
A.
,
Carbonell
,
R. G.
,
Whitaker
,
S.
, and
Herrmann
,
L. R.
,
1983
, “
Dispersion in Pulsed Systems-III: Comparison Between Theory and Experiments for Packed Beds
,”
Chem. Eng. Sci.
,
38
(
11
), pp.
1803
1816
. 10.1016/0009-2509(83)85037-4
4.
Ram
,
R. P.
,
Bharti
,
R. P.
, and
Dhiman
,
A. K.
,
2016
, “
Forced Convection Flow and Heat Transfer Across an Inline Bank of Circular Cylinders
,”
Can. J. Chem. Eng.
,
94
(
7
), pp.
1381
1395
. 10.1002/cjce.22483
5.
Tahmasebiboldaji
,
M.
,
Afrand
,
M.
,
Barzinjy
,
A. A.
,
Hamad
,
S. M.
, and
Talebizadehsardari
,
P.
,
2019
, “
Forced Convection Around Horizontal Tubes Bundles of a Heat Exchanger Using a Two-Phase Mixture Model: Effects of Nanofluid and Tubes Configuration
,”
Int. J. Mech. Sci.
,
161–162
(
10
), pp.
105056
. 10.1016/j.ijmecsci.2019.105056
6.
Bakhti
,
F. Z.
, and
Si-Ameur
,
M.
,
2019
, “
A Comparison of Mixed Convective Heat Transfer Performance of Nanofluids Cooled Heat Sink With Circular Perforated Pin Fin
,”
Appl. Therm. Eng.
,
159
(
8
), p.
113819
. 10.1016/j.applthermaleng.2019.113819
7.
Saha
,
A. K.
, and
Chanda
,
S.
,
2019
, “
Fully-Developed Natural Convection in a Periodic Array of Pin-Fins
,”
Int. J. Therm. Sci.
,
137
(
3
), pp.
325
336
. 10.1016/j.ijthermalsci.2018.11.020
8.
Valipour
,
M. S.
, and
Ghadi
,
A. Z.
,
2011
, “
Numerical Investigation of Fluid Flow and Heat Transfer Around a Solid Circular Cylinder Utilizing Nano Fluid
,”
Int. Commun. Heat Mass Transf.
,
38
(
9
), pp.
1296
1304
. 10.1016/j.icheatmasstransfer.2011.06.007
9.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
. 10.1021/i160003a005
10.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p.
571
. 10.1063/1.1700493
11.
Valipour
,
M. S.
,
Masoodi
,
R.
,
Rashidi
,
S.
,
Bovand
,
M.
, and
Mirhosseini
,
M.
,
2014
, “
A Numerical Study on Convection Around a Square Cylinder Using Al2O3-H2O Nanofluid
,”
Therm. Sci.
,
18
(
4
), pp.
1305
1314
. 10.2298/TSCI121224061V
12.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), pp.
1
3
. 10.1063/1.2093936
13.
Masoumi
,
N.
,
Sohrabi
,
N.
, and
Behzadmehr
,
A.
,
2009
, “
A New Model for Calculating the Effective Viscosity of Nanofluids
,”
J. Appl. Phys.
,
42
(
5
), pp.
1
6
. 10.1088/0022-3727/42/5/055501
14.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Biswas
,
G.
,
2012
, “
Mixed Convective Heat Transfer of Nanofluids Past a Circular Cylinder in Cross Flow in Unsteady Regime
,”
Int. J. Heat Mass Transf.
,
55
(
17–18
), pp.
4783
4799
. 10.1016/j.ijheatmasstransfer.2012.04.046
15.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
. 10.1016/S0142-727X(99)00067-3
16.
Garnett
,
J. C. M.
,
1906
, “
VII. Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions—II
,”
Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. a Math. or Phys. Character
,
205
(
387–401
), pp.
237
288
. 10.1098/rsta.1906.0007
17.
Vegad
,
M.
,
Satadia
,
S.
,
Pradip
,
P.
,
Chirag
,
P.
, and
Bhargav
,
P.
,
2014
, “
Heat Transfer Characteristics of Low Reynolds Number Flow of Nanofluid Around a Heated Circular Cylinder
,”
Procedia Technol.
,
14
(
1
), pp.
348
356
. 10.1016/j.protcy.2014.08.045
18.
Tiong
,
R.
,
Bing
,
H.
, and
Mohammed
,
H. A.
,
2012
, “
Upward Laminar Flow Around A Circular Cylinder Using Nanofluids
,”
J. Purity, Util. React. Environ.
,
1
(
9
), pp.
435
450
.
19.
Chamkha
,
A. J.
,
Rashad
,
A. M.
, and
Aly
,
A. M.
,
2013
, “
Transient Natural Convection Flow of a Nanofluid Over a Vertical Cylinder
,”
Meccanica
,
48
(
1
), pp.
71
81
. 10.1007/s11012-012-9584-8
20.
Etminan-farooji
,
V.
,
Ebrahimnia-bajestan
,
E.
,
Niazmand
,
H.
, and
Wongwises
,
S.
,
2012
, “
Unconfined Laminar Nanofluid Flow and Heat Transfer Around a Square Cylinder
,”
Int. J. Heat Mass Transf.
,
55
(
5–6
), pp.
1475
1485
. 10.1016/j.ijheatmasstransfer.2011.10.030
21.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transf.
,
52
(
21–22
), pp.
4675
4682
. 10.1016/j.ijheatmasstransfer.2009.06.027
22.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2013
, “
Buoyancy Driven Flow and Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
Int. J. Heat Mass Transf.
,
59
(
1
), pp.
433
450
. 10.1016/j.ijheatmasstransfer.2012.12.032
23.
Shafahi
,
M.
,
Bianco
,
V.
,
Vafai
,
K.
, and
Manca
,
O.
,
2010
, “
Thermal Performance of Flat-Shaped Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transf.
,
53
(
7–8
), pp.
1438
1445
. 10.1016/j.ijheatmasstransfer.2009.12.007
24.
Behzadmehr
,
A.
,
Avval
,
M. S.
, and
Galanis
,
N.
,
2007
, “
Prediction of Turbulent Forced Convection of a Nanofluid in a Tube With Uniform Heat Flux Using a Two Phase Approach
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
211
219
. 10.1016/j.ijheatfluidflow.2006.04.006
25.
Mirmasoumi
,
S.
, and
Behzadmehr
,
A.
,
2008
, “
Effect of Nanoparticles Mean Diameter on Mixed Convection Heat Transfer of a Nanofluid in a Horizontal Tube
,”
Int. J. Heat Fluid Flow
,
29
(
2
), pp.
557
566
. 10.1016/j.ijheatfluidflow.2007.11.007
26.
Maı¨ga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
,
2004
, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
543
557
. 10.1016/j.spmi.2003.09.012
27.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
G.
,
2007
, “
Numerical Investigation of Nanofluid Laminar Convective Heat Transfer Through a Circular Tube
,”
Numer. Heat Transf., Part A: Appl.
,
52
(
11
), pp.
1043
1058
. 10.1080/10407780701364411
28.
Drew
,
D. A.
, and
Passman
,
S. L.
,
2006
,
Theory of Multicomponent Fluids
,
Springer Science & Business Media
,
New York
, pp.
135
.
29.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanoparticle Res.
,
5
(
1/2
), pp.
167
171
. 10.1023/A:1024438603801
30.
Deepak Selvakumar
,
R.
, and
Dhinakaran
,
S.
,
2017
, “
Forced Convective Heat Transfer of Nanofluids Around a Circular Bluff Body With the Effects of Slip Velocity Using a Multiphase Mixture Model
,”
Int. J. Heat Mass Transf.
,
106
(
3
), pp.
816
828
. 10.1016/j.ijheatmasstransfer.2016.09.108
31.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manag.
,
52
(
1
), pp.
789
793
. 10.1016/j.enconman.2010.06.072
32.
Mahir
,
N.
, and
Altaç
,
Z.
,
2008
, “
Numerical Investigation of Convective Heat Transfer in Unsteady Flow Past Two Cylinders in Tandem Arrangements
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1309
1318
. 10.1016/j.ijheatfluidflow.2008.05.001
33.
Hasan
,
A.
, and
Siren
,
K.
,
2004
, “
Performance Investigation of Plain Circular and Oval Tube Evaporatively Cooled Heat Exchangers
,”
Appl. Therm. Eng.
,
24
(
5–6
), pp.
777
790
. 10.1016/j.applthermaleng.2003.10.022
34.
Bahaidarah
,
H. M. S.
,
Anand
,
N. K.
, and
Chen
,
H. C.
,
2006
, “
A Numerical Study of Fluid Flow and Heat Transfer Over a Bank of Flat Tubes
,”
Numer. Heat Transf., Part A: Appl.
,
48
(
4
), pp.
359
385
. 10.1080/10407780590957134
35.
Ibrahim
,
T. A.
, and
Gomaa
,
A.
,
2009
, “
Thermal Performance Criteria of Elliptic Tube Bundle in Crossflow
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2148
2158
. 10.1016/j.ijthermalsci.2009.03.011
36.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2006
, “
Convection Heat Transfer From Tube Banks in Crossflow : Analytical Approach
,”
Int. J. Heat Mass Transf.
,
49
(
25-26
), pp.
4831
4838
. 10.1016/j.ijheatmasstransfer.2006.05.042
37.
Mirabdolah Lavasani
,
A.
, and
Bayat
,
H.
,
2016
, “
Numerical Study of Pressure Drop and Heat Transfer From Circular and Cam-Shaped Tube Bank in Crossflow of Nanofluid
,”
Energy Convers. Manag.
,
129
(
12
), pp.
319
328
. 10.1016/j.enconman.2016.10.029
38.
Marzban
,
A.
,
Sheikhzadeh
,
G.
, and
Toghraie
,
D.
,
2020
, “
Laminar Flow and Heat Transfer of Water/NDG Nanofluid on Tube Banks With Rhombic Cross Section With Different Longitudinal Arrangements
,”
J. Therm. Anal. Calorim.
,
140
(
1
), pp.
427
437
. 10.1007/s10973-019-08812-6
39.
Asif
,
M.
, and
Dhiman
,
A.
,
2018
, “
Analysis of Laminar Flow Across a Triangular Periodic Array of Heated Cylinders
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
40
(
7
), pp.
1
24
. 10.1007/s40430-018-1273-7
40.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
. 10.1115/1.2150834
41.
Zukauskas
,
A.
,
1987
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transf.
,
18
(
1
), pp.
87
159
. 10.1016/S0065-2717(08)70118-7
42.
Wang
,
Y. Q.
,
Penner
,
L. A.
, and
Ormiston
,
S. J.
,
2000
, “
Analysis of Laminar Forced Convection of Air for Crossflow in Banks
,”
Numer. Heat Transf., Part A: Appl.
,
38
(
8
), pp.
819
845
. 10.1080/104077800457449
43.
Nishimura
,
T.
,
Itoh
,
H.
,
Ohya
,
K.
, and
Miyashita
,
H.
,
1991
, “
Experimental Validation of Numerical Analysis of Flow Across Tube Banks for Laminar Flow
,”
J. Chem. Eng. Jpn.
,
24
(
5
), pp.
666
669
. 10.1252/jcej.24.666
44.
Roychowdhury
,
D. G.
,
Das
,
S. K.
, and
Sundararajan
,
T.
,
2002
, “
Numerical Simulation of Laminar Flow and Heat Transfer Over Banks of Staggered Cylinders
,”
Int. J. Numer. Methods Fluids
,
39
(
1
), pp.
23
40
. 10.1002/fld.260
You do not currently have access to this content.