Abstract

This paper experimentally investigates heat transfer in a cooling passage with airfoil shaped fins for channel Reynolds numbers 10,000–40,000. This study uses airfoil shaped fins, instead of circular or oblong-shaped pins, for heat transfer augmentation. The airfoil shaped fins have more surface area than traditional pins. Assuming they both provide similar internal surface heat transfer coefficients, airfoil shaped fins will perform better than circular or oblong fins due to increased surface area. There is a need to obtain the heat transfer enhancement and pressure drop penalty in this cooling passage with airfoil shaped fins. Results are compared to the same rectangular cooling channel with smooth surfaces. The heat transfer can be enhanced 6–8 times while pressure drop is increased 70–90 times, as compared with the same channel with a smooth surface. With the fins significantly increasing the heat transfer area, three different methods are proposed for analyzing the heat transfer enhancement: (a) using the smooth channel area with the endwall temperature, (b) combining the total heat transfer area with the endwall temperature, and (c) coupling the total heat transfer area with the area weighted, average temperature including both the endwall and fin temperatures. Finally, compared directly to round pins, the airfoil shaped fins incur similar pressure penalties while providing slightly less heat transfer. The airfoil shaped fins benefit from a significant increase in the heat transfer area, a characteristic similar to more narrow strip fins.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, p.
869
.
2.
The Gas Turbine Handbook
,
2006
, “
U.S. Department of Energy—National Energy Technology Laboratory (NETL)
,” digitalcommons.fairfield.edu/engineering-books/3/
3.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components for Gas Turbine Engines
,”
Int. J. Rotat. Mach.
,
2013
, p.
32
. Article ID 275653. 10.1155/2013/275653
4.
Wright
,
L. M.
, and
Han
,
J. C.
,
2014
, “
Heat Transfer Enhancement for Turbine Blade Internal Cooling
,”
J. Enhanced Heat Transfer
,
21
(
2–3
), pp.
111
140
. 10.1615/JEnhHeatTransf.2015012169
5.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
. https://doi.org/10.1115/1.4023826
6.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer
,
140
(
11
), p.
113001
. https://doi.org/10.1115/1.4039644
7.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
700
706
. 10.1115/1.3245188
8.
Metzger
,
D. E.
, and
Haley
,
S. W.
,
1982
, “
Heat Transfer Experiments and Flow Visualization for Arrays of Short Pin Fins
,”
ASME Paper No. 82-GT-138
.
9.
VanFossen
,
G. J.
,
1982
, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Power
,
104
(
2
), pp.
268
274
. 10.1115/1.3227275
10.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
. 10.1115/1.3239545
11.
Metzger
,
D. E.
,
Shepard
,
W. B.
, and
Haley
,
S. W.
,
1986
, “
Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,”
ASME Paper No. 86-GT-132
.
12.
Lyall
,
M. E.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Low Aspect Ratio Pin Fins
,”
ASME J. Turbomach.
,
133
(
1
), p.
011001
. 10.1115/1.2812951
13.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Effects of Varying Streamwise and Spanwise Spacing in Pin-Fin Arrays
,”
ASME Paper No. GT2012-68127
.
14.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
. 10.1115/1.2841414
15.
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2012
, “
Heat Transfer Enhancement of Internal Cooling Passage With Triangular and Semi-Circular Shaped Pin-Fin Arrays
,”
ASME Paper No. GT2012-69266
.
16.
Uzol
,
O.
, and
Camci
,
C.
,
2005
, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
458
471
. 10.1115/1.1860563
17.
Sahiti
,
N.
,
Lemouedda
,
A.
,
Stojkovic
,
D.
,
Durst
,
F.
, and
Franz
,
E.
,
2006
, “
Performance Comparison of Pin Fin In-Duct Flow Arrays With Various Pin Cross-Sections
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1176
1192
. 10.1016/j.applthermaleng.2005.10.042
18.
Tarchi
,
L.
,
Facchini
,
B.
, and
Zecchi
,
S.
,
2008
, “
Experimental Investigation of Innovative Internal Trailing Edge Cooling Configurations With Pentagonal Arrangement and Elliptic Pin Fins
,”
Int. J. Rotat. Mach.
,
2008
, p.
10
. Article No. 109120. 10.1155/2008/109120
19.
Kirsch
,
K. L.
,
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2014
, “
Comparison of Pin Surface Heat Transfer in Arrays of Oblong and Cylindrical Pin Fins
,”
ASME J. Turbomach.
,
136
(
4
), p.
10
. Article No. 041015. 10.1115/1.4025213
20.
Xu
,
J.
,
Yao
,
J.
,
Su
,
P.
,
Lei
,
J.
,
Wu
,
J.
, and
Gao
,
T.
,
2017
, “
Heat Transfer and Pressure Loss Characteristics of Pin-Fins With Different Shapes in a Wide Channel
,”
ASME Paper No. GT2017-63761
.
21.
Fernandes
,
R.
,
2016
, “
Investigation of Pin Fin Cooling Channels for Applications in Gas Turbines
,”
M.S. thesis
,
Embry-Riddle Aeronautical University
,
Daytona Beach, FL
.
22.
Effendy
,
M.
,
Yao
,
U.
,
Yao
,
J.
, and
Marchant
,
D. R.
,
2019
, “
Pin-Fin Shape and Orientation Effects on Wall Heat Transfer Predictions of Gas Turbine Blade
,”
AIP Conference Proceedings
, Paper No. 020008, 8 pages.
23.
Nuntakulamarat
,
M.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2020
, “
Heat Transfer and Pressure Drop Measurements in a High Aspect Ratio Channel With Circular Pins and Strip Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031019
. https://doi.org/10.1115/1.4045221
24.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
. 10.1088/0957-0233/11/7/312
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng.
,
75
, pp.
3
8
.
26.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
(
3
), pp.
628
635
. 10.1115/1.3239782
27.
Chowdhury
,
N. H.
,
Zirakzadeh
,
H.
, and
Han
,
J. C.
,
2017
, “
A Predictive Model for Preliminary Gas Turbine Blade Cooling Analysis
,”
ASME J. Turbomach.
,
139
(
9
), p.
091010
. https://doi.org/10.1115/1.4036302
You do not currently have access to this content.