Abstract

This experimental study explores the passive cooling of electronic devices using phase change materials (PCM). Pin fin configurations made of aluminum are considered as thermal conductive enhancers and eicosane as the PCM for the study. The experiment considers four different heat sinks, with 40 and 56 numbers of pin fins. For the same number of pin fin, dual and constant height fin arrangements are study. The volume fractions of TCEs are 9%, 11%, 13%, and 16%. Apart from these heat sinks, a heat sink with no fin (blank heat sink) is considered for baseline comparison. Five different heat fluxes are considered (ranging from 1.17 kW/m2 to 2.35 kW/m2). The effect of number of fins, type of fins, and volumes of PCM has been reviewed. It has been observed that the introduction of fins enhances the heat transfer. An elongation in operational time is achieved in the case of dual height heat sinks compared to constant height heat sink filled with PCM. All the experiments are performed in a temperature-controlled room to avoid environment fluctuation.

References

1.
Yeh
,
L.
,
1996
, “
Review of Heat Transfer Technologies in Electronic Equipment
,”
ASME J. Electron. Packag.
,
117
(
4
), pp.
333
339
. 10.1115/1.2792113
2.
Hosseinirad
,
E.
,
K-Aliabadi
,
M.
, and
Hormozi
,
F.
,
2019
, “
Effects of Splitter Shape on Thermal-Hydraulic Characteristics of Plate-Pin-Fin Heat Sink (PPFHS)
,”
Int. J. Heat Mass Transf.
,
143
(
16
), p.
118586
. 10.1016/j.ijheatmasstransfer.2019.118586
3.
Shen
,
H.
,
Xie
,
G.
, and
Wang
,
C. C.
,
2019
, “
The Numerical Simulation With Staggered Alternation Locations and Multiflow Directions on the Thermal Performance of Double-Layer Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
163
(
18
), p.
114332
. 10.1016/j.applthermaleng.2019.114332
4.
Li
,
X. Y.
,
Wang
,
S. L.
,
Wang
,
X. D.
, and
Wang
,
T. H.
,
2019
, “
Selected Porous-Ribs Design for Performance Improvement in Double-Layered Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
137
(
3
), pp.
616
626
. 10.1016/j.ijthermalsci.2018.12.029
5.
Abdulqadur
,
A. A.
,
Jaffal
,
H. M.
, and
Khudhur
,
D. S.
,
2019
, “
Performance Optimization of a Cylindrical Mini-Channel Heat Sink Using Hybrid Straight–Wavy Channel
,”
Int. J. Therm. Sci.
,
146
(
12
), p.
106111
. 10.1016/j.ijthermalsci.2019.106111
6.
Chamanroy
,
Z.
, and
Khoshvaght-Aliabadi
,
M.
,
2019
, “
Analysis of Straight and Wavy Miniature Heat Sinks Equipped With Straight and Wavy Pin-Fins
,”
Int. J. Therm. Sci.
,
146
(
12
), p.
106071
. 10.1016/j.ijthermalsci.2019.106071
7.
Zhu
,
J. F.
,
Li
,
X. Y.
,
Wang
,
S. L.
,
Yang
,
Y. R.
, and
Wang
,
X. D.
,
2019
, “
Performance Comparison of Wavy Microchannel Heat Sinks With Wavy Bottom Rib and Side Rib Designs
,”
Int. J. Therm. Sci.
,
146
(
12
), p.
106068
. 10.1016/j.ijthermalsci.2019.106068
8.
Deng
,
Z.
,
Shen
,
J.
,
Dai
,
W.
,
Li
,
K.
,
Song
,
Q.
,
Gong
,
W.
,
Dong
,
X.
, and
Gong
,
M.
,
2019
, “
Experimental Study on Cooling of High-Power Laser Diode Arrays Using Hybrid Microchannel and Slot Jet Array Heat Sink
,”
Appl. Therm. Eng.
,
162
(
17
), p.
114242
. 10.1016/j.applthermaleng.2019.114242
9.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
. 10.1016/j.rser.2007.10.005
10.
Li
,
Y.
,
Guo
,
B.
,
Huang
,
G.
,
Kubo
,
S.
, and
Shu
,
P.
,
2015
, “
Characterization and Thermal Performance of Nitrate Mixture/SiC Ceramic Honeycomb Composite Phase Change Materials for Thermal Energy Storage
,”
Appl. Therm. Eng.
,
81
(
8
), pp.
193
197
. 10.1016/j.applthermaleng.2015.02.008
11.
Li
,
W. Q.
,
Qu
,
Z. G.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2012
, “
Experimental and Numerical Studies on Melting Phase Change Heat Transfer in Open-Cell Metallic Foams Filled With Paraffin
,”
Appl. Therm. Eng.
,
37
(
5
), pp.
1
9
. 10.1016/j.applthermaleng.2011.11.001
12.
Jaworski
,
M.
,
2012
, “
Thermal Performance of Heat Spreader for Electronics Cooling With Incorporated Phase Change Material
,”
Appl. Therm. Eng.
,
35
(
3
), pp.
212
219
. 10.1016/j.applthermaleng.2011.10.036
13.
Kalbasi
,
R.
, and
Salimpour
,
M. R.
,
2015
, “
Constructal Design of Phase Change Material Enclosures Used for Cooling Electronic Devices
,”
Appl. Therm. Eng.
,
84
(
11
), pp.
339
349
. 10.1016/j.applthermaleng.2015.03.031
14.
Setoh
,
G.
,
Tan
,
F. L.
, and
Fok
,
S. C.
,
2010
, “
Experimental Studies on the Use of a Phase Change Material for Cooling Mobile Phones
,”
Int. Commun. Heat Mass Transfer
,
37
(
9
), pp.
1403
1410
. 10.1016/j.icheatmasstransfer.2010.07.013
15.
Gharbi
,
S.
,
Harmand
,
S.
, and
Jabrallah
,
S. B.
,
2015
, “
Experimental Comparison Between Different Configurations of PCM Based Heat Sinks for Cooling Electronic Components
,”
Appl. Therm. Eng.
,
87
(
14
), pp.
454
462
. 10.1016/j.applthermaleng.2015.05.024
16.
Saha
,
S. K.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2008
, “
Studies on Optimum Distribution of Fins in Heat Sinks Filled With Phase Change Materials
,”
ASME J. Heat Transfer
,
130
(
3
), p.
034505
. 10.1115/1.2804948
17.
Alawadhi
,
E. M.
, and
Amon
,
C. H.
,
2003
, “
PCM Thermal Control Unit for Portable Electronic Devices: Experimental and Numerical Studies
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
116
125
. 10.1109/TCAPT.2003.811480
18.
Tan
,
F. L.
, and
Tso
,
C. P.
,
2004
, “
Cooling of Mobile Electronic Devices Using Phase Change Materials
,”
Appl. Therm. Eng.
,
24
(
2–3
), pp.
159
169
. 10.1016/j.applthermaleng.2003.09.005
19.
Nayak
,
K. C.
,
Saha
,
S. K.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2006
, “
A Numerical Model for Heat Sinks With Phase Change Materials and Thermal Conductivity Enhancers
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1833
1844
. 10.1016/j.ijheatmasstransfer.2005.10.039
20.
Fok
,
S. C.
,
Shen
,
W.
, and
Tan
,
F. L.
,
2010
, “
Cooling of Portable Hand-Held Electronic Devices Using Phase Change Materials in Finned Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
109
117
. 10.1016/j.ijthermalsci.2009.06.011
21.
Kandasamy
,
R.
,
Wang
,
X. Q.
, and
Majumdar
,
A. S.
,
2007
, “
Application of Phase Change Materials in Thermal Management of Electronics
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2822
2832
. 10.1016/j.applthermaleng.2006.12.013
22.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tian
,
Y.
,
2010
, “
Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded Within Phase Change Materials (PCMs)
,”
Sol. Energy
,
84
(
8
), pp.
1402
1412
. 10.1016/j.solener.2010.04.022
23.
Xiang
,
J.
,
Zhang
,
C.
,
Jiang
,
F.
,
Liu
,
X.
, and
Tang
,
Y.
,
2011
, “
Fabrication and Testing of Phase Change Heat Sink for High Power led
,”
Trans. Nonferrous Metals Soc. China
,
21
(
9
), pp.
2066
2071
. 10.1016/S1003-6326(11)60974-6
24.
Ye
,
W. B.
,
Zhu
,
D. S.
, and
Wang
,
N.
,
2011
, “
Numerical Simulation on Phase-Change Thermal Storage/Release in a Plate-Fin Unit
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3871
3884
. 10.1016/j.applthermaleng.2011.07.035
25.
Baby
,
R.
, and
Balaji
,
C.
,
2012
, “
Experimental Investigations on Phase Change Material Based Finned Heat Sinks for Electronic Equipment Cooling
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1642
1649
. 10.1016/j.ijheatmasstransfer.2011.11.020
26.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Experimental Investigations on Thermal Performance Enhancement and Effect of Orientation on Porous Matrix Filled PCM Based Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
46
(
7
), pp.
27
30
. 10.1016/j.icheatmasstransfer.2013.05.018
27.
Arshad
,
A.
,
Ali
,
H. M.
,
Yan
,
W. M.
,
Hussein
,
A. K.
, and
Ahmadlouydarab
,
M.
,
2018
, “
An Experimental Study of Enhanced Heat Sinks for Thermal Management Using n-Eicosane as Phase Change Material
,”
Appl. Therm. Eng.
,
132
(
5
), pp.
52
66
. 10.1016/j.applthermaleng.2017.12.066
28.
Ashraf
,
M. J.
,
Ali
,
H. M.
,
Usman
,
H.
, and
Arshad
,
A.
,
2017
, “
Experimental Passive Electronics Cooling: Parametric Investigation of Pin-Fin Geometries and Efficient Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
115
(
14
), pp.
251
263
. 10.1016/j.ijheatmasstransfer.2017.07.114
29.
Wang
,
X. Q.
,
Majumdar
,
A. S.
, and
Yap
,
C.
,
2007
, “
Effect of Orientation for Phase Change Material (PCM)-Based Heat Sinks for Transient Thermal Management of Electric Components
,”
Int. Comm. Heat Mass Transf.
,
34
(
7
), pp.
801
808
. 10.1016/j.icheatmasstransfer.2007.03.008
30.
Al-Sarkhi
,
A.
,
2005
, “
Comparison Between Dual and Constant Height Shrouded Fin Array Subjected to Forced Convection Heat Transfer
,”
Int. Comm. Heat Mass Transf.
,
32
(
3–4
), pp.
548
556
. 10.1016/j.icheatmasstransfer.2004.02.017
31.
Pathak
,
K. K.
,
Giri
,
A.
, and
Lingfa
,
P.
,
2018
, “
A Numerical Study of Natural Convective Heat Transfer From a Shrouded Vertical Dual Height Non-isothermal Fin Array
,”
Appl. Therm. Eng.
,
130
(
3
), pp.
1310
1318
. 10.1016/j.applthermaleng.2017.11.120
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.