Abstract

This paper reports on numerical simulations of passive cooling of an electronic component. The strategy is based on the fusion of a nano-enhanced phase change material (NePCM) by insertion of hybrid Cu-Al2O3 nanoparticles. This study analyzes the combined effects of the position of the electronic component and the inclination of the heat sink for rectangular and square geometries on the heat transfer and flow structure of liquid NePCM. The heat sink is heated by a protuberant heat source simulating the role of an electronic component generating a volumetric power. The electronic component is mounted on a substrate modeling the role of a motherboard. The development of a 2D mathematical model is based on the equations of conservation of mass, momentum, and energy. This system of equations is solved using the finite volume method and the SIMPLE algorithm for velocity–pressure coupling. The enthalpy-porosity approach is adopted to model the phase change. The results obtained show that the position of the electronic component and the inclination of the enclosure have important effects on the efficiency of the cooling strategy. The inclination of 90 deg and the position of δ = 0.5 represent the case where the cooling of the electronic component is efficient and operates safely with a minimum temperature difference recorded along it. The electronic component is well cooled in a rectangular heat sink than in a square one.

References

1.
Yeh
,
L. T.
,
1995
, “
Review of Heat Transfer Technologies in Electronic Equipment
,”
ASME J. Electron. Packag.
,
117
(
4
), pp.
333
339
. 10.1115/1.2792113
2.
Ali
,
H. M.
,
Arshad
,
A.
,
Jabbal
,
M.
, and
Verdin
,
P. G.
,
2018
, “
Thermal Management of Electronics Devices With PCMs Filled Pin-Fin Heat Sinks: A Comparison
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1199
1204
. 10.1016/j.ijheatmasstransfer.2017.10.065
3.
Arshad
,
A.
,
Jabbal
,
M.
, and
Yan
,
Y.
,
2020
, “
Thermal Performance of PCM-Based Heat Sink With Partially Filled Copper Oxide Coated Metal-Foam for Thermal Management of Microelectronics
,”
Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
,
Orlando
,
July 21–23, 2020
, pp.
697
702
.
4.
Saha
,
S.
,
Khan
,
J.
, and
Farouk
,
T.
,
2020
, “
Study of Hybrid Wet/Dry Cooling With Different Surface Morphology: Analyses on Pressure Drop and Thermal Performances
,”
ASME 2020 Heat Transfer Summer Conference Collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels, Virtual
,
Virtual, Online
,
July 13–15
, p. V001T12A015.
5.
Saha
,
S.
,
Tikadar
,
A.
,
Khan
,
J.
, and
Farouk
,
T.
,
2019
, “
Numerical Analysis on Evaporation Assisted Convective Cooling: Effect of Surface Morphology
,”
ASME International Mechanical Engineering Congress and Exposition
,
Salt Lake City
,
Nov. 11–14, 2019
, p.
V008T09A051
.
6.
Faraji
,
H.
,
El Alami
,
M.
, and
Arshad
,
A.
,
2020
, “
Investigating the Effect of Single and Hybrid Nanoparticles on Melting of Phase Change Material in a Rectangular Enclosure with Finite Heat Source
,”
Int. J. Energy Res.
, pp.
1
17
.
7.
Faraji
,
H.
,
El Alami
,
M.
,
Arshad
,
A.
, and
Faraji
,
M.
,
2020
, “
Numerical Simulation of the Melting of a NePCM for Cooling Electronic Components
,”
Therm. Sci. Eng. Prog.
,
21
, p.
100766
.
8.
Faraji
,
H.
,
Benkaddour
,
A.
,
Oudaoui
,
K.
,
El Alami
,
M.
, and
Faraji
,
M.
,
2020
, “
Emerging Applications of Phase Change Materials: A Concise Review of Recent Advances
,”
Heat Transfer
, pp.
1
51
.
9.
Mehta
,
D. S.
,
Vaghela
,
B.
,
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2020
, “
Enrichment of Heat Transfer in a Latent Heat Storage Unit Using Longitudinal Fins
,”
Heat Transfer
, pp.
1
27
.
10.
Sheikholeslami
,
M.
,
Farshad
,
S. A.
,
Shafee
,
A.
, and
Babazadeh
,
H.
,
2021
, “
Performance of Solar Collector With Turbulator Involving Nanomaterial Turbulent Regime
,”
Renewable Energy
,
163
, pp.
1222
1237
. 10.1016/j.renene.2020.08.144
11.
Berroug
,
F.
,
Lakhal
,
E. K.
,
El Omari
,
M.
,
Faraji
,
M.
, and
El Qarnia
,
H.
,
2011
, “
Numerical Study of Greenhouse Nocturnal Heat Losses
,”
J. Therm. Sci.
,
20
(
4
), pp.
377
384
. 10.1007/s11630-011-0484-3
12.
Zhao
,
Y.
,
Li
,
Q.
,
Zou
,
B.
,
Zhang
,
T.
,
Jin
,
L.
,
Qiao
,
G.
,
Nie
,
B.
,
Huang
,
Y.
, and
Ding
,
Y.
,
2020
, “
Performance of a Liquid Cooling-Based Battery Thermal Management System With a Composite Phase Change Material
,”
Int. J. Energy Res.
,
44
(
6
), pp.
4727
4742
. 10.1002/er.5254
13.
Liu
,
J.
,
Wang
,
C.
,
Sun
,
H.
,
Wang
,
H.
,
Rong
,
F.
,
He
,
L.
,
Lou
,
Y.
,
Zhang
,
S.
,
Zhang
,
Z.
, and
Du
,
M.
,
2020
, “
CoOx/CoNy Nanoparticles Encapsulated Carbon-Nitride Nanosheets as an Efficiently Trifunctional Electrocatalyst for Overall Water Splitting and Zn-Air Battery
,”
Appl. Catal. B Environ.
,
279
, pp.
119407
. 10.1016/j.apcatb.2020.119407
14.
Liaqat
,
A.
, and
Baytas
,
A. C.
,
2001
, “
Numerical Comparison of Conjugate and Non-Conjugate Natural Convection for Internally Heated Semi-Circular Pools
,”
Int. J. Heat Fluid Flow
,
22
(
6
), pp.
650
656
. 10.1016/S0142-727X(01)00124-2
15.
Hariti
,
Y.
,
Hader
,
A.
,
Amallah
,
L.
,
Achik
,
I.
, and
Boughaleb
,
Y.
,
2019
, “
Langevin Dynamics Study of the Mean Flow Rate-Energy Stochastic Fluid Intrusion Process in Porous Media
,”
Int. Rev. Model. Simul.
,
12
(
6
), pp.
398
406
. 10.15866/iremos.v12i6.17037
16.
Indulakshmi
,
B.
, and
Madhu
,
G.
, “
Heat Transfer Modeling and Simulations for Electronic Cooling Systems Embedded With Phase Changing Materials
,”
Heat Transfer
,
47
(
1
), pp.
185
202
.
17.
Zennouhi
,
H.
,
Benomar
,
W.
,
Kousksou
,
T.
,
Msaad
,
A. A.
,
Allouhi
,
A.
,
Mahdaoui
,
M.
, and
El Rhafiki
,
T.
,
2017
, “
Effect of Inclination Angle on the Melting Process of Phase Change Material
,”
Case Stud. Therm. Eng.
,
9
, pp.
47
54
. 10.1016/j.csite.2016.11.004
18.
Taghilou
,
M.
, and
Khavasi
,
E.
,
2020
, “
Thermal Behavior of a PCM Filled Heat Sink: The Contrast Between Ambient Heat Convection and Heat Thermal Storage
,”
Appl. Therm. Eng.
,
174
, p.
115273
. 10.1016/j.applthermaleng.2020.115273
19.
Arshad
,
A.
,
Jabbal
,
M.
,
Sardari
,
P. T.
,
Bashir
,
M. A.
,
Faraji
,
H.
, and
Yan
,
Y.
,
2020
, “
Transient Simulation of Finned Heat Sinks Embedded With PCM for Electronics Cooling
,”
Therm. Sci. Eng. Prog.
,
18
, p.
100520
. 10.1016/j.tsep.2020.100520
20.
Tian
,
L. L.
,
Liu
,
X.
,
Chen
,
S.
, and
Shen
,
Z. G.
,
2020
, “
Effect of Fin Material on PCM Melting in a Rectangular Enclosure
,”
Appl. Therm. Eng.
,
167
, p.
114764
. 10.1016/j.applthermaleng.2019.114764
21.
Arshad
,
A.
,
Jabbal
,
M.
, and
Yan
,
Y.
,
2020
, “
Thermophysical Characteristics and Application of Metallic-Oxide Based Mono and Hybrid Nanocomposite Phase Change Materials for Thermal Management Systems
,”
Appl. Therm. Eng.
,
181
, p.
115999
. 10.1016/j.applthermaleng.2020.115999
22.
Faraji
,
H.
,
Faraji
,
M.
, and
El Alami
,
M.
,
2019
, “
Numerical Study of the Transient Melting of Nano-Enhanced Phase Change Material
,”
Heat Transfer Eng.
,
42
(
2
), pp.
120
139
. 10.1080/01457632.2019.1692496
23.
Faraji
,
H.
,
Faraji
,
M.
, and
El Alami
,
M.
,
2020
, “
Numerical Survey of the Melting Driven Natural Convection Using Generation Heat Source: Application to the Passive Cooling of Electronics Using Nano-Enhanced Phase Change Material
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021005
. 10.1115/1.4044167
24.
Faraji
,
H.
,
Faraji
,
M.
,
El Alami
,
M.
,
Hariti
,
Y.
,
Arshad
,
A.
,
Hader
,
A.
, and
Benkaddour
,
A.
,
2020
, “
Cooling of Recent Microprocessors by the Fusion of Nano-Enhanced Phase Change Materials
,”
Mater. Today Proc.
,
30
(
4
), pp.
865
869
. 10.1016/j.matpr.2020.04.342
25.
Parsazadeh
,
M.
, and
Duan
,
X.
,
2020
, “
Effects of Nanoparticles on Phase Change Heat Transfer Rate in the Presence of Rayleigh-Benard Convection
,”
Int. J. Heat Mass Transfer
,
156
, p.
119831
. 10.1016/j.ijheatmasstransfer.2020.119831
26.
Bashar
,
M.
, and
Siddiqui
,
K.
,
2018
, “
Experimental Investigation of Transient Melting and Heat Transfer Behavior of Nanoparticle-Enriched PCM in a Rectangular Enclosure
,”
J. Energy Storage
,
18
, pp.
485
497
. 10.1016/j.est.2018.06.006
27.
Pahamli
,
Y.
,
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
, and
Bahrampoury
,
R.
,
2017
, “
Effect of Nanoparticle Dispersion and Inclination Angle on Melting of PCM in a Shell and Tube Heat Exchanger
,”
J. Taiwan Inst. Chem. Eng.
,
81
, pp.
316
334
. 10.1016/j.jtice.2017.09.044
28.
Ghadikolaei
,
S. S.
,
Yassari
,
M.
,
Sadeghi
,
H.
,
Hosseinzadeh
,
K.
, and
Ganji
,
D. D.
,
2017
, “
Investigation on Thermophysical Properties of TiO2–Cu/H2O Hybrid Nanofluid Transport Dependent on Shape Factor in MHD Stagnation Point Flow
,”
Powder Technol.
,
322
, pp.
428
438
. 10.1016/j.powtec.2017.09.006
29.
Humphries
,
W. R.
, and
Griggs
,
E. I.
,
1977
,
A Design Handbook for Phase Change Thermal Control and Energy Storage Devices
,
National Aeronautics and Space Administration
,
USA
.
30.
Tummala
,
R. R.
,
2001
,
Fundamentals of Microsystems Packaging
,
McGraw-Hill
,
New York
.
31.
Fleischer
,
A. S.
,
2015
,
Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications
,
Springer International Publishing
,
USA
.
32.
Jourabian
,
M.
,
Farhadi
,
M.
, and
Darzi
,
A. A. R.
,
2013
, “
Outward Melting of Ice Enhanced by Cu Nanoparticles Inside Cylindrical Horizontal Annulus: Lattice Boltzmann Approach
,”
Appl. Math. Model.
,
37
(
20–21
), pp.
8813
8825
. 10.1016/j.apm.2013.04.003
33.
Arasu
,
A. V.
, and
Mujumdar
,
A. S.
,
2012
, “
Numerical Study on Melting of Paraffin wax with Al2O3 in a Square Enclosure
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
8
16
. 10.1016/j.icheatmasstransfer.2011.09.013
34.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
. 10.1016/0017-9310(87)90317-6
35.
Voller
,
V. R.
,
Cross
,
M.
, and
Markatos
,
N. C.
,
1987
, “
An Enthalpy Method for Convection/Diffusion Phase Change
,”
Int. J. Numer. Methods Eng.
,
24
(
1
), pp.
271
284
. 10.1002/nme.1620240119
36.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
37.
Pal
,
D.
, and
Joshi
,
Y. K.
,
2001
, “
Melting in a Side Heated Tall Enclosure by a Uniformly Dissipating Heat Source
,”
Int. J. Heat Mass Transfer
,
44
(
2
), pp.
375
387
. 10.1016/S0017-9310(00)00116-2
You do not currently have access to this content.