Abstract

In order to meet the urgent need of developing advanced infrared camouflage technology, a novel concept of infrared regulation based on cooperative control of emissivity and temperature was proposed. Combining the traditional calculation model of infrared characteristics with the control strategy of proportional-integral-differential (PID), the corresponding model of the infrared control system was designed. By integrating the electrochromic material with the thin film resistor, the theoretical feasibility of the infrared control system was verified by the principle prototype. Subsequently, the models of space target and corresponding profiling decoy were established. Meanwhile, the infrared camouflage characteristics of profiling decoy in the 3–5 µm band and the 8–14 µm band were investigated, respectively. The results reveal that the profiling decoy with cooperative control of emissivity and temperature can achieve a more satisfactory effect of infrared control than that of ordinary temperature control. The cooperative control system can effectively reduce the overshoot of radiation and has the ability of fast response, high control precision, and control stability. The theoretical approach provides useful insight for the deep understanding of infrared control and support further research on infrared camouflage.

References

1.
Zhang
,
F.
,
Zhou
,
Y.
,
Cao
,
Y.
, and
Chen
,
J.
,
2007
, “
Preparation and Characterization of KGM/CdS Nanocomposite Film With Low Infrared Emissivity
,”
Mater. Lett.
,
61
(
26
), pp.
4811
4814
.
2.
Sun
,
K.
,
Zhou
,
W.
,
Tang
,
X.
, and
Luo
,
F.
,
2016
, “
Application of Indium Tin Oxide (ITO) Thin Film as a Low Emissivity Film on Ni-Based Alloy at High Temperature
,”
Infrared Phys. Technol.
,
78
, pp.
156
161
.
3.
Zhou
,
J.
,
Zhan
,
Z.
, and
Han
,
Y.
,
2020
, “
Design of a Microstructured Surface for Infrared Radiation Regulation Based on Structural Combinations
,”
J. Quant. Spectrosc. Radiat. Transfer
,
256
, p.
107299
.
4.
Wei
,
F.
,
2000
, “
Present State of Electro-optic Passive Jam Technique
,”
J. Appl. Opt.
,
21
(
6
), pp.
1
5
.
5.
Peng
,
Z.
,
Rongzhong
,
L.
,
Rui
,
G.
, and
Jun
,
Z.
,
2014
, “
The Inflation Process and Radiation Characteristics of Profiling Decoy Body
,”
J. Project. Rock. Missil. Guid.
,
34
(
01
), pp.
172
175
.
6.
Li
,
S.
,
Ye
,
H.
, and
Lin
,
Q.
,
2016
, “
Theoretical Analysis of the Surface Temperature Regulation of an Infrared False Target Subjected to Periodical Ambient Conditions
,”
Def. Technol.
,
12
(
5
), pp.
360
366
.
7.
Guangde
,
L.
,
Dongqing
,
L.
,
Yi
,
W.
,
Haifeng
,
C.
, and
Zhijian
,
L.
,
2019
, “
Research Status and Progress of the Thermal Infrared Camouflage Technology
,”
Infrared Technol.
,
41
(
6
), pp.
495
503
.
8.
Kim
,
T.
,
Bae
,
J.
,
Lee
,
N.
, and
Cho
,
H. H.
,
2019
, “
Hierarchical Metamaterials for Multispectral Camouflage of Infrared and Microwaves
,”
Adv. Funct. Mater.
,
29
(
10
), p.
1807319
.
9.
Yunsong
,
F.
,
Jia
,
S.
,
Yuan
,
L.
, and
Yongshun
,
L.
,
2012
, “
Mechanism and Implementation of Dynamic IR Pattern Painting Based on Peltier Effect
,”
Infrared Laser Eng.
,
41
(
7
), pp.
1695
1699
.
10.
Li
,
H.
,
Xie
,
K.
,
Pan
,
Y.
,
Yao
,
M.
, and
Xin
,
C.
,
2009
, “
Variable Emissivity Infrared Electrochromic Device Based on Polyaniline Conducting Polymer
,”
Synth. Met.
,
159
(
13
), pp.
1386
1388
.
11.
Mortimer
,
R. J.
,
2011
, “
Electrochromic Mater
,”
Annu. Rev. Mater. Res.
,
41
(
1
), pp.
241
268
.
12.
Ye
,
S.
,
Liu
,
Z.
,
Cheng
,
S.
, and
Ban
,
G.
,
2015
, “
Research Progress of Infrared Stealth Materials
,”
Laser Infrared
,
45
(
11
), pp.
1285
1291
.
13.
Kim
,
B.
,
Koh
,
J. K.
,
Park
,
J.
,
Ahn
,
C.
,
Ahn
,
J.
,
Kim
,
J. H.
, and
Jeon
,
S.
,
2015
, “
Patternable PEDOT Nanofilms With Grid Electrodes for Transparent Electrochromic Devices Targeting Thermal Camouflage
,”
Nano Convergence
,
2
(
1
), p.
19
.
14.
Han
,
T.
,
2014
, “
Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials
,”
Adv. Mater.
,
11
(
26
), pp.
1731
1734
.
15.
Phan
,
L.
,
Walkup Iv
,
W.
,
Ordinario
,
D.
,
Karshalev
,
E.
,
Jocson
,
J.-M.
,
Burke
,
A.
, and
Gorodetsky
,
A.
,
2013
, “
Camouflage Coatings: Reconfigurable Infrared Camouflage Coatings From a Cephalopod Protein
,”
Adv. Mater.
,
25
(
39
), p.
5676
.
16.
Lu
,
F.
,
Tan
,
P.
, and
Han
,
Y.
,
2020
, “
Variable Infrared Emissivity Based on Polyaniline Electrochromic Device Influenced by Porous Substrate
,”
J. Appl. Polym. Sci.
,
138
(
1
).
17.
Chandrasekhar
,
P.
,
Zay
,
B. J.
,
McQueeney
,
T.
,
Scara
,
A.
,
Ross
,
D.
,
Birur
,
G. C.
,
Haapanen
,
S.
,
Kauder
,
L.
,
Swanson
,
T.
, and
Douglas
,
D.
,
2003
, “
Conducting Polymer (CP) Infrared Electrochromics in Spacecraft Thermal Control and Military Applications
,”
Synth. Met.
,
135–136
, pp.
23
24
.
18.
Chandrasekhar
,
P.
,
Birur
,
G. C.
,
Stevens
,
P.
,
Rawal
,
S.
,
Pierson
,
E. A.
, and
Miller
,
K. L.
,
2001
, “
Far Infrared Electrochromism in Unique Conducting Polymer Systems
,”
Synth. Met.
,
119
(
1
), pp.
293
294
.
19.
Dai
,
H.
,
Zhang
,
Y.
,
Zhou
,
H.
, and
Zhao
,
S.
,
2018
, “
Study on Infrared Radiation Characteristics of Exoatmosphere Ballistic Target
,”
Laser Infrared
,
48
(
8
), pp.
993
998
.
20.
Zhao
,
L.
,
1995
, “
A New Method to Calculate the Heat Flux in Spacecraft Orbits
,”
Opt. Precis. Eng.
,
3
(
6
), pp.
80
85
.
21.
Han
,
Y.
, and
Xuan
,
Y.
,
2005
, “
Infrared Feature of the Satellite
,”
Infrared Laser Eng.
,
34
(
1
), pp.
34
37
.
22.
Han
,
Y.
, and
Xuan
,
Y.
,
2002
, “
The Study and Application of the IR Feature of Target and Background
,”
Infrared Technol.
,
24
(
4
), pp.
16
19
.
23.
Chen
,
H.
,
1985
,
Infrared Physics
,
National Defense Industry Press
,
Beijing
.
You do not currently have access to this content.