Abstract

This study reports a numerical-experimental analysis of heat transfer and airflow in a scaled room with a heated wall coupled with a double-channel vertical roof solar chimney. For the experimental part, a parametric study was performed in the thermal system, considering different values of heat flux supplied to a vertical wall of the scaled room (75 and 150 W/m2) and the absorber surface of the solar chimney (151 and 667 W/m2). Experimental temperature profiles were obtained at six different depths and heights, and experimental heat transfer coefficients were computed for both heated surfaces. The renormalization group k-ɛ turbulence model was evaluated against experimental data using computational fluid dynamics software. With the validated model, the effect of the heated wall and solar chimney on temperature fields, flow patterns, and heat transfer convective coefficients are presented and discussed. The cases with heat flux on the heated wall of the scaled room produce the biggest air changes per hour (ACH), being 30.1, 31.2, and 23.4 ACH for cases 1 to 3, respectively, while cases with no heated wall produce fewer ACH (11.72 and 12.28 for case 4 and 5). The comparison between cases with and without heat flux on one vertical wall but the same solar chimney heat flux shows that the ACH increases between 154% and 156%, respectively.

References

1.
International Eneregy Agency
,
2019
, “
Key World Energy Statistics
,” France.
2.
Awbi
,
H.
,
2003
,
Ventilaton of Buildings
,
E. & FN Spon
,
London
.
3.
Khalid
,
E.
,
Younis
,
O.
,
Hamdan
,
A. M.
, and
Hussein
,
A. K.
,
2020
, “
A Study on Energy Performance and Optimum Thickness of Thermal Insulation for Building in Different Climatic Regions in Sudan
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
73
(
2
), pp.
146
162
.
4.
Ghodbane
,
M.
,
Boumeddane
,
B.
, and
Hussein
,
A. K.
,
2021
, “
Performance Analysis of a Solar-Driven Ejector air Conditioning System Under El-Oued Climatic Conditions, Algeria
,”
J. Therm. Eng.
,
7
(
1
), pp.
172
189
.
5.
Carrer
,
P.
,
Wargocki
,
P.
,
Fanetti
,
A.
,
Bischof
,
W.
,
De Oliveira Fernandes
,
E.
,
Hartmann
,
T.
,
Kephalopoulos
,
S.
,
Palkonen
,
S.
, and
Seppänen
,
O.
,
2015
, “
What Does the Scientific Literature Tell us About the Ventilation-Health Relationship in Public and Residential Buildings?
,”
Build. Environ.
,
94
, pp.
273
286
.
6.
Khanal
,
R.
, and
Lei
,
C.
,
2011
, “
Solar Chimney—A Passive Strategy for Natural Ventilation
,”
Energy Build.
,
43
(
8
), pp.
1811
1819
.
7.
Nanda
,
A. K.
, and
Panigrahi
,
C. K.
,
2016
, “
A State-of-the-Art Review of Solar Passive Building System for Heating or Cooling Purpose
,”
Front. Energy
,
10
(
3
), pp.
347
354
.
8.
Shi
,
L.
,
2018
, “
Theoretical Models for Wall Solar Chimney Under Cooling and Heating Modes Considering Room Configuration
,”
Energy
,
165
, pp.
925
938
.
9.
Bacharoudis
,
E.
,
Vrachopoulos
,
M. G.
,
Koukou
,
M. K.
,
Margaris
,
D.
,
Filios
,
A. E.
, and
Mavrommatis
,
S. A.
,
2007
, “
Study of the Natural Convection Phenomena Inside a Wall Solar Chimney With One Wall Adiabatic and one Wall Under a Heat Flux
,”
Appl. Therm. Eng.
,
27
(
13
), pp.
2266
2275
.
10.
Wang
,
Q.
,
Zhang
,
G.
,
Li
,
W.
, and
Shi
,
L.
, “
External Wind on the Optimum Designing Parameters of a Wall Solar Chimney in Building
,”
Sustainable Energy Technol. Assess.
,
42
, p.
100842
.
11.
Bassiouny
,
R.
, and
Korah
,
N. S. A.
,
2009
, “
Effect of Solar Chimney Inclination Angle on Space Flow Pattern and Ventilation Rate
,”
Energy Build.
,
41
(
2
), pp.
190
196
.
12.
Al-Kayiem
,
H. H.
,
Sreejaya
,
K. V.
, and
Ul-Haq Gilani
,
S. I.
,
2014
, “
Mathematical Analysis of the Influence of the Chimney Height and Collector Area on the Performance of a Roof top Solar Chimney
,”
Energy Build.
,
68
, pp.
305
311
.
13.
Arce
,
J.
,
Xaman
,
J. P.
,
Alvarez
,
G.
,
Jimenez
,
M. J.
,
Enriquez
,
R.
, and
Heras
,
M. R.
,
2013
, “
A Simulation of the Thermal Performance of a Small Solar Chimney Already Installed in a Building
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011005
.
14.
Zavala-Guillen
,
I.
,
Xaman
,
J.
,
Alvarez
,
G.
,
Arce
,
J.
, and
Hernandez-Perez
,
I.
,
2016
, “
Computational Fluid Dynamics for Modeling the Turbulent Natural Convection in a Double air-Channel Solar Chimney System
,”
Int. J. Mod. Phys. C
,
27
(
8
), p.
1650095
.
15.
Jiménez-Xamán
,
C.
,
Xaman
,
J.
,
Gijon-Rivera
,
M.
,
Zavala-Guillen
,
I.
,
Noh-Pat
,
F.
, and
Sima
,
E.
,
2020
, “
Assessing the Thermal Performance of a Rooftop Solar Chimney Attached to a Single Room
,”
J. Build. Eng.
,
31
, p.
101380
.
16.
Bassiouny
,
R.
, and
Korah
,
N. S. A.
,
2008
, “
An Analytical and Numerical Study of Solar Chimney Use for Room Natural Ventilation
,”
Energy Build.
,
40
(
5
), pp.
865
873
.
17.
Kong
,
J.
,
Niu
,
J.
, and
Lei
,
C.
,
2020
, “
A CFD Based Approach for Determining the Optimum Inclination Angle of a Roof-Top Solar Chimney for Building Ventilation
,”
Sol. Energy
,
198
, pp.
555
569
.
18.
Lei
,
Y.
,
Zhang
,
Y.
,
Wang
,
F.
, and
Wang
,
X.
,
2016
, “
Enhancement of Natural Ventilation of a Novel Roof Solar Chimney with Perforated Absorber Plate for Building Energy Conservation
,”
Appl. Therm. Eng.
,
107
, pp.
653
661
.
19.
Zavala-Guillen
,
I.
,
Xaman
,
J.
,
Hernandez-Perez
,
I.
,
Hernandez-Lopez
,
I.
,
Jimenez-Xaman
,
C.
,
Moreno-Bernal
,
P.
, and
Sauceda
,
D.
,
2018
, “
Ventilation Potential of an Absorber-Partitioned air Channel Solar Chimney for Diurnal Use Under Mexican Climate Conditions
,”
Appl. Therm. Eng.
,
147
, pp.
403
417
.
20.
Tan
,
A. Y. K.
, and
Wong
,
N. H.
,
2013
, “
Parameterization Studies of Solar Chimneys in the Tropics
,”
Energies
,
6
(
6
), pp.
145
163
.
21.
Dhahri
,
M.
,
Nekoonam
,
S.
,
Hana
,
A.
,
El Haj Assad
,
M.
,
Arici
,
M.
,
Sharifpur
,
M.
, and
Sammouda
,
H.
,
2020
, “
Thermal Performance Modeling of Modified Absorber Wall of Solar Chimney-Shaped Channels System for Building Ventilation
,”
J. Therm. Anal. Calorim.
22.
Lechowska
,
A.
,
Szczepanik-Scisło
,
N.
,
Schnotale
,
J.
,
Stelmach
,
M.
, and
Pyszczek
,
T.
,
2018
, “
CFD Modelling of Transient Thermal Performance of Solar Chimney Used for Passive Ventilation in a Building
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
415
, p.
012049
.
23.
Andreozzi
,
A.
,
Buonomo
,
B.
, and
Manca
,
O.
,
2012
, “
Numerical Investigation of Transient Natural Convection in a Vertical Channel-Chimney System Symmetrically Heated at Uniform Heat Flux
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
6077
6089
.
24.
Xaman
,
J.
,
Vargas-Lopez
,
R.
,
Gijon-Rivera
,
M.
,
Zavala-Guillen
,
I.
,
Jimenez
,
M. J.
, and
Arce
,
J.
,
2019
, “
Transient Thermal Analysis of a Solar Chimney for Buildings with Three Different Types of Absorbing Materials: Copper Plate/PCM/Concrete Wall
,”
Renewable Energy
,
136
, pp.
139
158
.
25.
Jiménez-Xamán
,
C.
,
Xamán
,
J.
,
Moraga
,
N. O.
,
Hernández-Pérez
,
I.
,
Zavala-Guillén
,
I.
,
Arce
,
J.
, and
Jiménez
,
M. J.
,
2019
, “
Solar Chimneys with a Phase Change Material for Buildings: An Overview Using CFD and Global Energy Balance
,”
Energy Build.
,
186
, pp.
384
404
.
26.
Duan
,
S.
,
2019
, “
A Predictive Model for Airflow in a Typical Solar Chimney Based on Solar Radiation
,”
J. Build. Eng.
,
26
, p.
100916
.
27.
Mokheimer
,
E. M. A.
,
Shakeel
,
M. R.
, and
Al-Sadah
,
J.
,
2017
, “
A Novel Design of Solar Chimney for Cooling Load Reduction and Other Applications in Buildings
,”
Energy Build.
,
153
, pp.
219
230
.
28.
Khosravi
,
M.
,
Fazelpour
,
F.
, and
Rosen
,
M. A.
,
2019
, “
Improved Application of a Solar Chimney Concept in a Two-Story Building: An Enhanced Geometry Through a Numerical Approach
,”
Renewable Energy
,
143
, pp.
569
585
.
29.
Khedari
,
J.
,
Boonsri
,
B.
, and
Hirunlabh
,
J.
,
1999
, “
Ventilation Impact of a Solar Chimney on Indoor Temperature Fluctuation and Air Change in a School Building
,”
Energy Build.
,
32
(
1
), pp.
89
93
.
30.
Mathur
,
J.
,
Bansal
,
N. K.
,
Mathur
,
S.
,
Jain
,
M.
, and
Anupma
,
P.
,
2006
, “
Experimental Investigations on Solar Chimney for Room Ventilation
,”
Sol. Energy
,
80
(
8
), pp.
927
935
.
31.
Cheng
,
X.
,
Shi
,
L.
,
Dai
,
P.
,
Zhang
,
G.
,
Yang
,
H.
, and
Li
,
J.
,
2018
, “
Study on Optimizing Design of Solar Chimney for Natural Ventilation and Smoke Exhaustion
,”
Energy Build.
,
170
, pp.
145
156
.
32.
Khanal
,
R.
, and
Lei
,
C.
,
2014
, “
An Experimental Investigation of an Inclined Passive Wall Solar Chimney for Natural Ventilation
,”
Sol. Energy
,
107
, pp.
461
474
.
33.
Arce
,
J.
,
Jiménez
,
M. J.
,
Guzmán
,
J. D.
,
Heras
,
M. R.
,
Álvarez
,
G.
, and
Xamán
,
J.
,
2009
, “
Experimental Study for Natural Ventilation on a Solar Chimney
,”
Renewable Energy
,
34
(
12
), pp.
2928
2934
.
34.
Chow
,
C. L.
, and
Chow
,
W. K.
,
2010
, “
Initial Buoyancy Reduction in Exhausting Smoke with Solar Chimney Design
,”
ASME J. Heat Transfer
,
132
(
1
), p.
014502
.
35.
Wei
,
D.
,
Qirong
,
Y.
, and
Jincui
,
Z.
,
2011
, “
A Study of the Ventilation Performance of a Series of Connected Solar Chimneys Integrated with Building
,”
Renewable Energy
,
36
(
1
), pp.
265
271
.
36.
Tang
,
A. Y. K.
, and
Wong
,
N. H.
,
2012
, “
Natural Ventilation Performance of Classroom with Solar Chimney System
,”
Energy Build.
,
53
, pp.
19
27
.
37.
Shi
,
L.
,
Cheng
,
X.
,
Zhang
,
L.
,
Li
,
Z.
,
Zhang
,
G.
,
Huang
,
D.
, and
Tu
,
J.
, “
Interaction Effect of Room Opening and Air Inlet on Solar Chimney Performance
,”
Appl. Therm. Eng.
,
159
, p.
113877
.
38.
Afonso
,
C.
, and
Oliveira
,
A.
,
2000
, “
Solar Chimneys: Simulation and Experiment
,”
Energy Build.
,
32
(
1
), pp.
71
79
.
39.
Ong
,
K. S.
, and
Chow
,
C. C.
,
2003
, “
Performance of a Solar Chimney
,”
Sol. Energy
,
74
(
1
), pp.
1
17
.
40.
Hou
,
Y.
,
Li
,
H.
, and
Li
,
A.
,
2019
, “
Experimental and Theoretical Study of Solar Chimneys in Buildings with Uniform Wall Heat Flux
,”
Sol. Energy
,
193
, pp.
244
252
.
41.
Imran
,
A. A.
,
Jalil
,
J. M.
, and
Ahmed
,
S. T.
, “
Induced Flow for Ventilation and Cooling by a Solar Chimney
,”
Renewable Energy
,
78
, pp.
236
244
.
42.
Al-Kayiem
,
H. H.
,
Sreejaya
,
K. V.
, and
Chikre
,
A. O.
,
2018
, “
Experimental and Numerical Analysis of the Influence of Inlet Configuration on the Performance of a Roof Top Solar Chimne
,”
Energy Build.
,
159
, pp.
89
98
.
43.
Tan
,
A. Y. K.
, and
Wong
,
N. H.
,
2014
, “
Influences of Ambient Air Speed and Internal Heat Load on the Performance of Solar Chimney in the Tropics
,”
Sol. Energy
,
102
, pp.
116
125
.
44.
Chodury
,
D.
,
1993
, “
Introduction to the Renormalization Group Method and Turbulence Modelling
,”
Fluent, Report No. TM-107
.
45.
Nielsen
,
P.
,
1990
,
Specification of a Two-Dimensional Test Case. Energy Conservation in Building and Community System.
Institut for Bygningsteknik, Aalborg Universitet.
,
Aalborg
. (
Gul serie; No. 8, Vol. R9040
).
46.
van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancement of SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.
47.
Van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
48.
ANSI/ASHRAE, Standard 62.1
,
2013
,
Ventilation for Acceptable Indoor Air Quality
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
,
New York City
.
You do not currently have access to this content.