Abstract

Active materials like the proposed variable thermal conductivity metamaterial enable new thermal designs and low-cost, low-power, passive thermal control. Thermal control of satellites conventionally requires active thermal control systems that are expensive, large, inefficient, energy-intensive, and unavailable for CubeSats. The high-temperature operation case is the thermal system’s primary design consideration for CubeSats. The thermal path is designed to reject as much heat as possible to ensure the system does not overheat. In other cases, such as during a power anomaly, the oversized thermal path results in rapid cooling, culminating in mission failure due to thermal limits on the electronics or batteries. Improving the thermal control of CubeSats can enable new thermally challenging missions, increase satellite longevity, and increase mission success rate by controlling the dynamic thermal environment. The materials available for thermal management are inherently limited, but new engineered materials provide unique opportunities to change how satellites adapt to thermal loads. This paper investigates using an adaptive metamaterial designed to passively change its thermal conductivity as a function of temperature to meet the needs of the satellite. The thermal performance of a CubeSat is evaluated with a variable thermal conductivity metamaterial located in the critical thermal path from the satellite to the radiator. The system’s performance using two metamaterial configurations is compared to a baseline copper thermal path. Multiple satellite thermal operation cases are investigated to determine the operation ranges, and the metamaterial’s performance in various conditions is quantified.

References

1.
Phoenix
,
A. A.
, and
Wilson
,
E.
,
2017
, “
Variable Thermal Conductance Metamaterials for Passive or Active Thermal Management
,”
Proceedings of the Smart Materials, Adaptive Structures and Intelligent Systems
,
Snowbird, UT
,
Sept. 18
,
American Society of Mechanical Engineers
, p.
V001T001A002
.
2.
Phoenix
,
A. A.
, and
Wilson
,
E.
,
2018
, “
Adaptive Thermal Conductivity Metamaterials: Enabling Active and Passive Thermal Control
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051020
.
3.
Phoenix
,
A. A.
,
2020
, “
Variable Conductivity Metamaterials and Thermal Control Systems Employing the Same
,” Google Patents.
4.
Phoenix
,
A. A.
,
2016
, “
High Precision Thermal Morphing of the Smart Anisogrid Structure for Space-Based Applications
,” Doctoral dissertation, Virginia Tech., Blacksburg, VA.
5.
Phoenix
,
A. A.
,
2017
, “
Thermal Morphing Anisogrid Smart Space Structures: Thermal Isolation Design and Linearity Evaluation
,”
Proceedings of the Active and Passive Smart Structures and Integrated Systems
,
Orlando, FL
,
Apr. 11
,
SPIE
, pp.
117
127
.
6.
Phoenix
,
A. A.
,
2017
, “
Thermal Modeling and Design of the Anisogrid Morphing Structure for a Modular Optical Telescope Concept
,”
J. Astron. Telesc. Instrum. Syst.
,
3
(
4
), p.
047001
.
7.
Phoenix
,
A. A.
,
Borggaard
,
J.
, and
Tarazaga
,
P. A.
,
2018
, “
Thermal Morphing Anisogrid Smart Space Structures: Part 2. Ranking of Geometric Parameter Importance, Trust Region Optimization, and Performance Evaluation
,”
J. Vib. Control
,
24
(
13
), pp.
2873
2893
.
8.
Phoenix
,
A. A.
, and
Tarazaga
,
P. A.
,
2018
, “
Thermal Morphing Anisogrid Smart Space Structures: Part 1. Introduction, Modeling, and Performance of the Novel Smart Structural Application
,”
J. Vib. Control
,
24
(
13
), pp.
2853
2872
.
9.
Phoenix
,
A. A.
,
2019
, “
Thermal Morphing Anisogrid Structure
,” US Patent No. 10,473,094.
10.
Han
,
T.
,
Bai
,
X.
,
Liu
,
D.
,
Gao
,
D.
,
Li
,
B.
,
Thong
,
J. T.
, and
Qiu
,
C.-W.
,
2015
, “
Manipulating Steady Heat Conduction by Sensu-Shaped Thermal Metamaterials
,”
Sci. Rep.
,
5
(
1
), pp.
1
7
.
11.
Ren
,
L.
,
Zhou
,
X.
,
Xue
,
J.
,
Song
,
Z.
,
Li
,
B.
,
Liu
,
Q.
, and
Zhao
,
C.
,
2019
, “
Thermal Metamaterials With Site-Specific Thermal Properties Fabricated by 3D Magnetic Printing
,”
Adv. Mater. Technol.
,
4
(
7
), p.
1900296
.
12.
Yang
,
S.
,
Wang
,
J.
,
Dai
,
G.
,
Yang
,
F.
, and
Huang
,
J.
,
2021
, “
Controlling Macroscopic Heat Transfer With Thermal Metamaterials: Theory, Experiment and Application
,”
Phys. Rep.
,
908
, pp.
1
65
.
13.
Li
,
Y.
,
Li
,
W.
,
Han
,
T.
,
Zheng
,
X.
,
Li
,
J.
,
Li
,
B.
,
Fan
,
S.
, and
Qiu
,
C.-W.
,
2021
, “
Transforming Heat Transfer With Thermal Metamaterials and Devices
,”
Nat. Rev. Mater.
,
6
(
6
), pp.
488
507
.
14.
Álvarez Hostos
,
J. C.
,
Fachinotti
,
V. D.
, and
Peralta
,
I.
,
2019
, “
Metamaterial for Elastostatic Cloaking Under Thermal Gradients
,”
Sci. Rep.
,
9
(
1
), pp.
1
9
.
15.
Han
,
T.
,
Bai
,
X.
,
Thong
,
J. T.
,
Li
,
B.
, and
Qiu
,
C. W.
,
2014
, “
Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials
,”
Adv. Mater.
,
26
(
11
), pp.
1731
1734
.
16.
Hartsfield
,
C. R.
,
Shelton
,
T. E.
,
Palmer
,
B. O.
, and
O’Hara
,
R.
,
2020
, “
All-Metallic Phase Change Thermal Management Systems for Transient Spacecraft Loads
,”
J. Aerosp. Eng.
,
33
(
4
), p.
04020039
.
17.
Yang
,
T.
,
Kwon
,
B.
,
Weisensee
,
P. B.
,
Kang
,
J. G.
,
Li
,
X.
,
Braun
,
P.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2018
, “
Millimeter-Scale Liquid Metal Droplet Thermal Switch
,”
Appl. Phys. Lett.
,
112
(
6
), p.
063505
.
18.
Li
,
Y.
,
Zhu
,
K.-J.
,
Peng
,
Y.-G.
,
Li
,
W.
,
Yang
,
T.
,
Xu
,
H.-X.
,
Chen
,
H.
,
Zhu
,
X.-F.
,
Fan
,
S.
, and
Qiu
,
C.-W.
,
2019
, “
Thermal Meta-Device in Analogue of Zero-Index Photonics
,”
Nat. Mater.
,
18
(
1
), pp.
48
54
.
19.
Swenson
,
C.
,
2021
, “
Active Thermal Architecture for Cryogenic Optical Instrumentation (ATA): Active Thermal Control for CubeSats and Small-Satellites
,” No. 2021-05-10-ARC.
20.
Anderson
,
L.
,
2021
, “
CubeSat Active Thermal Control in Support of Advanced Payloads: The Active Thermal Architecture Project
,”
CubeSats and SmallSats for Remote Sensing V
,
Virtual
,
Sept. 13
,
SPIE
, Vol. 11832.
21.
Goodwin
,
G. B.
,
Maxwell
,
J. R.
, and
Hyde
,
E. W.
,
2018
, “
Towards a Hybrid Mechanically-Pumped Loop Heat Pipe: Investigation of Bearingless Micro Pumps
,”
Naval Research Lab
,
Washington, DC
.
22.
Goodwin
,
G. B.
, and
Maxwell
,
J. R.
,
2017
, “
Numerical Simulations and Performance Analysis of a Magnetically-Driven Bearingless Micro-Pump
,”
Proceedings of the 47th AIAA Fluid Dynamics Conference
,
Denver, CO
,
June 5
, p.
3963
.
23.
Hengeveld
,
D. W.
,
Mathison
,
M. M.
,
Braun
,
J. E.
,
Groll
,
E. A.
, and
Williams
,
A. D.
,
2010
, “
Review of Modern Spacecraft Thermal Control Technologies
,”
HVACR Res.
,
16
(
2
), pp.
189
220
.
24.
Barako
,
M. T.
,
Gambin
,
V.
, and
Tice
,
J.
,
2018
, “
Integrated Nanomaterials for Extreme Thermal Management: A Perspective for Aerospace Applications
,”
Nanotechnology
,
29
(
15
), p.
154003
.
25.
Lang
,
F.
,
Wang
,
H.
,
Zhang
,
S.
,
Liu
,
J.
, and
Yan
,
H.
,
2018
, “
Review on Variable Emissivity Materials and Devices Based on Smart Chromism
,”
Int. J. Thermophys.
,
39
(
1
), pp.
1
20
.
26.
Paris
,
A.
,
Anderson
,
K.
,
Chandrasekhar
,
P.
,
Zay
,
B.
, and
McQueeney
,
T.
,
2005
, “
Electrochromic Radiators for Microspacecraft Thermal Control
.”
27.
Demiryont
,
H.
, and
Moorehead
,
D.
,
2009
, “
Electrochromic Emissivity Modulator for Spacecraft Thermal Management
,”
Sol. Energy Mater. Sol. Cells
,
93
(
12
), pp.
2075
2078
.
28.
Grob
,
L. M.
, and
Swanson
,
T. D.
,
2000
, “
Parametric Study of Variable Emissivity Radiator Surfaces
,”
AIP Conference Proceedings
,
Darmstadt, Germany
,
Sept. 11–14
,
American Institute of Physics
, pp.
809
814
.
29.
Swanson
,
T. D.
, and
Birur
,
G. C.
,
2003
, “
NASA Thermal Control Technologies for Robotic Spacecraft
,”
Appl. Therm. Eng.
,
23
(
9
), pp.
1055
1065
.
30.
Darrin
,
A. G.
,
Osiander
,
R.
,
Champion
,
J.
,
Swanson
,
T.
,
Douglas
,
D.
, and
Grob
,
L. M.
,
2000
, “
Variable Emissivity Through MEMS Technology
,”
Proceedings of the ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No. 00CH37069)
,
Denver, CO
,
May 28
,
IEEE
, pp.
264
270
.
31.
Osiander
,
R.
,
Firebaugh
,
S. L.
,
Champion
,
J. L.
,
Farrar
,
D.
, and
Darrin
,
M. G.
,
2004
, “
Microelectromechanical Devices for Satellite Thermal Control
,”
IEEE Sens. J.
,
4
(
4
), pp.
525
531
.
32.
Currano
,
J.
,
Moghaddam
,
S.
,
Lawler
,
J.
, and
Kim
,
J.
,
2008
, “
Performance Analysis of an Electrostatic Switched Radiator Using Heat-Flux-Based Emissivity Measurement
,”
J. Thermophys. Heat Transfer
,
22
(
3
), pp.
360
365
.
33.
Shimakawa
,
Y.
,
Yoshitake
,
T.
,
Kubo
,
Y.
,
Machida
,
T.
,
Shinagawa
,
K.
,
Okamoto
,
A.
,
Nakamura
,
Y.
,
Ochi
,
A.
,
Tachikawa
,
S.
, and
Ohnishi
,
A.
,
2002
, “
A Variable-Emittance Radiator Based on a Metal–Insulator Transition of (La, Sr) MnO3 Thin Films
,”
Appl. Phys. Lett.
,
80
(
25
), pp.
4864
4866
.
34.
Dudon
,
J.-P.
,
Marcel
,
C.
,
Dubost
,
L.
,
Ravaux
,
A.
,
Aubert
,
P.-H.
,
Duzellier
,
S.
,
Remaury
,
S.
, and
Divay
,
L.
,
2021
, “
Development of Variable Emissivity Coatings for Thermal Radiator
,”
Proceedings of the ICES 2021-50th International Conference on Environmental Systems
,
Lisbon, Portugal
,
July 12
.
35.
Wang
,
X.
,
Cao
,
Y.
,
Zhang
,
Y.
,
Yan
,
L.
, and
Li
,
Y.
,
2015
, “
Fabrication of VO2-Based Multilayer Structure With Variable Emittance
,”
Appl. Surf. Sci.
,
344
, pp.
230
235
.
36.
Wei
,
H.
,
Gu
,
J.
,
Ren
,
F.
,
Zhang
,
L.
,
Xu
,
G.
,
Wang
,
B.
,
Song
,
S.
,
Zhao
,
J.
,
Dou
,
S.
, and
Li
,
Y.
,
2021
, “
Smart Materials for Dynamic Thermal Radiation Regulation
,”
Small
,
17
(
35
), p.
2100446
.
37.
Cao
,
S.
,
Chen
,
X.
,
Wu
,
G.
,
Yang
,
J.
,
Wang
,
R.
,
Shang
,
K.
, and
Wang
,
L.
,
2011
, “
Variable Emissivity Surfaces for Micro and Nano-Satellites
,”
Phys. Procedia
,
18
, pp.
91
94
.
38.
Athanasopoulos
,
N.
, and
Siakavellas
,
N. J.
,
2017
, “
Smart Patterned Surfaces With Programmable Thermal Emissivity and Their Design Through Combinatorial Strategies
,”
Sci. Rep.
,
7
(
1
), pp.
1
16
.
39.
Welch
,
J. W.
,
2014
, “
Considerations for Two-Tier Thermal Testing of Spacecraft Electronic Units
,”
44th International Conference on Environmental Systems
,
Tucson, AZ
,
July 14
.
You do not currently have access to this content.