Abstract

Solar dryers are traditional devices used for drying various products. Different indirect solar dryer (ISD) geometries were theoretically examined using computational fluid dynamics (CFD). This paper presents a numerical investigation of two indirect solar dryers using CFD simulation, comparing the velocity and thermal performance of dryers with smooth and corrugated absorber plates. The temperature values obtained by numerical simulations were compared to the experimental measurements and found a maximum variation difference of 1.26%. The maximum velocity in the solar air collector (SAC) and the value of average temperature at the SAC outlet were found to be 0.58 m/s and 336 K for the smooth absorber ISD, and 0.77 m/s and 350 K for the corrugated absorber ISD. It was observed that the corrugated absorber plate exhibited superior thermal performance and a higher maximum velocity compared to the smooth absorber plate. Within the cabinet, a uniform temperature profile was observed, particularly for the corrugated case. V-shaped absorber plates offer higher heat transfer rates, increased turbulence, and greater surface area for heat transfer, making them more efficient for drying processes compared to smooth absorber plates. Therefore, corrugated absorber plates in solar air collectors are a more efficient option than using smooth absorber plates.

References

1.
Jiskani
,
S. A.
,
Ahmed Chandio
,
I.
,
Mehdi
,
G.
,
Memon
,
A. H.
,
Raqeeb Bhutto
,
A.
, and
Sandilo
,
U. G.
,
2020
, “
Fabrication & Performance Analysis of Direct Type Passive Solar Dryer for Chilies and Grapes Drying
,”
2020 3rd International Conference on Computing, Mathematical and Engineering Technologies (iCoMET 2020)
,
Sukkur, Pakistan
,
Jan. 29–30
.
2.
Lamidi
,
R. O.
,
Jiang
,
L.
,
Pathare
,
P. B.
,
Wang
,
Y. D.
, and
Roskilly
,
A. P.
,
2019
, “
Recent Advances in Sustainable Drying of Agricultural Produce: A Review
,”
Appl. Energy
,
233–234
, pp.
367
385
.
3.
Lingayat
,
A. B.
,
Chandramohan
,
V. P.
,
Raju
,
V. R. K.
, and
Meda
,
V.
,
2020
, “
A Review on Indirect Type Solar Dryers for Agricultural Crops—Dryer Setup, Its Performance, Energy Storage and Important Highlights
,”
Appl. Energy
,
258
, p.
114005
.
4.
Vásquez
,
J.
,
Reyes
,
A.
, and
Pailahueque
,
N.
,
2019
, “
Modeling, Simulation and Experimental Validation of a Solar Dryer for Agro-Products With Thermal Energy Storage System
,”
Renewable Energy
,
139
, pp.
1375
1390
.
5.
Defraeye
,
T.
,
2014
, “
Advanced Computational Modelling for Drying Processes—A Review
,”
Appl. Energy
,
131
, pp.
323
344
.
6.
Jafari
,
S. M.
,
Azizi
,
D.
,
Mirzaei
,
H.
, and
Dehnad
,
D.
,
2016
, “
Comparing Quality Characteristics of Oven-Dried and Refractance Window-Dried Kiwifruits
,”
J. Food Process. Preserv.
,
40
(
3
), pp.
362
372
.
7.
AnilKumar
,
O. A.
,
2012
, “
Solar Drying Technology Concept, Design, Testing, Modeling
,”
Econ. Environ.
,
4
(
1
), pp.
16
54
.
8.
Prakash
,
O.
, and
Kumar
,
A.
,
2013
, “
Historical Review and Recent Trends in Solar Drying Systems
,”
Int. J. Green Energy
,
10
(
7
), pp.
690
738
.
9.
Demissie
,
P.
,
Hayelom
,
M.
,
Kassaye
,
A.
,
Hailesilassie
,
A.
,
Gebrehiwot
,
M.
, and
Vanierschot
,
M.
,
2019
, “
Design, Development and CFD Modeling of Indirect Solar Food Dryer
,”
Energy Proc.
,
158
, pp.
1128
1134
.
10.
Predolin
,
R. E.
,
Ito
,
M. C.
,
Palma
,
G. L.
, and
Scalon
,
V. L.
,
2022
, “
An Experimental and Numerical Investigation of Absorber Positioning in a Natural Convection Solar Drying System
,”
Sol. Energy
,
243
, pp.
431
442
.
11.
Mohana
,
Y.
,
Mohanapriya
,
R.
,
Anukiruthika
,
T.
,
Yoha
,
K. S.
,
Moses
,
J. A.
, and
Anandharamakrishnan
,
C.
,
2020
, “
Solar Dryers for Food Applications: Concepts, Designs, and Recent Advances
,”
Sol. Energy
,
208
, pp.
321
344
.
12.
Abhay
,
L.
,
Chandramohan
,
V. P.
, and
Raju
,
V. R. K.
,
2018
, “
Numerical Analysis on Solar Air Collector Provided With Artificial Square Shaped Roughness for Indirect Type Solar Dryer
,”
J. Clean. Prod.
,
190
, pp.
353
367
.
13.
Mishra
,
L.
,
Hauchhum
,
L.
, and
Gupta
,
R.
,
2022
, “
Development and Performance Investigation of a Novel Solar-Biomass Hybrid Dryer
,”
Appl. Therm. Eng.
,
211
, p.
118492
.
14.
Tuncer
,
A. D.
,
Sözen
,
A.
,
Khanlari
,
A.
,
Amini
,
A.
, and
Şirin
,
C.
,
2020
, “
Thermal Performance Analysis of a Quadruple-Pass Solar Air Collector Assisted Pilot-Scale Greenhouse Dryer
,”
Sol. Energy
,
203
, pp.
304
316
.
15.
Sanghi
,
A.
,
Ambrose
,
R. P. K.
, and
Maier
,
D.
,
2018
, “
CFD Simulation of Corn Drying in a Natural Convection Solar Dryer
,”
Dry Technol.
,
36
(
7
), pp.
859
870
.
16.
Darabi
,
H.
,
Zomorodian
,
A.
,
Akbari
,
M. H.
, and
Lorestani
,
A. N.
,
2013
, “
Design a Cabinet Dryer With Two Geometric Configurations Using CFD
,”
J. Food Sci. Technol.
,
52
(
1
), pp.
359
366
.
17.
Amanlou
,
Y.
, and
Zomorodian
,
A.
,
2010
, “
Applying CFD for Designing a New Fruit Cabinet Dryer
,”
J. Food Eng.
,
101
(
1
), pp.
8
15
.
18.
Essalhi
,
H.
,
Tadili
,
R.
, and
Bargach
,
M. N.
,
2018
, “
Comparison of Thermal Performance Between Two Solar Air Collectors for an Indirect Solar Dryer
,”
J. Phys. Sci.
,
29
(
3
), pp.
55
64
.
19.
Malekjani
,
N.
, and
Jafari
,
S. M.
,
2018
, “
Simulation of Food Drying Processes by Computational Fluid Dynamics (CFD); Recent Advances and Approaches
,”
Trends Food Sci. Technol.
,
78
, pp.
206
223
.
20.
Babu
,
A. K.
,
Kumaresan
,
G.
,
Antony Aroul Raj
,
V.
, and
Velraj
,
R.
,
2020
, “
CFD Studies on Different Configurations of Drying Chamber for Thin-Layer Drying of Leaves
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
42
(
18
), pp.
2227
2239
.
21.
Singh
,
R.
,
Salhan
,
P.
, and
Kumar
,
A.
,
2021
, “
CFD Modelling and Simulation of an Indirect Forced Convection Solar Dryer
,”
IOP Conf. Ser. Earth Environ. Sci.
,
795
(
1
), p.
012008
.
22.
Meenakshi Reddy
,
R.
,
Siva Reddy
,
E.
,
Uma Maheswari
,
C.
, and
Krishna Reddy
,
K.
,
2018
, “
CFD and Experimental Analysis of Solar Crop Dryer With Waste Heat Recovery System of Exhaust Gas From Diesel Engine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
164
(
1
), p.
012010
.
23.
Madadi Avargani
,
V.
,
Abdlla Maarof
,
H.
, and
Zendehboudi
,
S.
,
2023
, “
Multiphysics CFD Modeling to Assess Performance of a Perforated Multi-Plate Indirect Solar Dryer With a V-Corrugated Absorber Surface
,”
Appl. Therm. Eng.
,
227
, p.
120387
.
24.
Amouiri
,
R.
, and
Belhamri
,
A.
,
2022
, “
CFD Investigations on the Behavior of a Solar Dryer Used for Medicinal Herbs Dehydration Under Climatic Conditions of Constantine, Algeria
,”
Mater. Today Proc.
,
51
, pp.
2123
2130
.
25.
Chaatouf
,
D.
,
Salhi
,
M.
,
Raillani
,
B.
,
Amraqui
,
S.
,
Mezrhab
,
A.
, and
Naji
,
H.
,
2022
, “
Parametric Analysis of a Sensible Heat Storage Unit in an Indirect Solar Dryer Using Computational Fluid Dynamics
,”
J. Energy Storage
,
49
, p.
104075
.
26.
Iranmanesh
,
M.
,
Samimi Akhijahani
,
H.
, and
Barghi Jahromi
,
M. S.
,
2020
, “
CFD Modeling and Evaluation the Performance of a Solar Cabinet Dryer Equipped With Evacuated Tube Solar Collector and Thermal Storage System
,”
Renewable Energy
,
145
, pp.
1192
1213
.
27.
Al-Kayiem
,
H. H.
, and
Gitan
,
A. A.
,
2021
, “
Flow Uniformity Assessment in a Multi-chamber Cabinet of a Hybrid Solar Dryer
,”
Sol. Energy
,
224
, pp.
823
832
.
28.
Mirzaee
,
P.
,
Salami
,
P.
,
Samimi Akhijahani
,
H.
, and
Zareei
,
S.
,
2023
, “
Life Cycle Assessment, Energy and Exergy Analysis in an Indirect Cabinet Solar Dryer Equipped With Phase Change Materials
,”
J. Energy Storage
,
61
, p.
106760
.
29.
Lad
,
P.
,
Kumar
,
R.
,
Saxena
,
R.
, and
Patel
,
J.
,
2023
, “
Numerical Investigation of Phase Change Material Assisted Indirect Solar Dryer for Food Quality Preservation
,”
Int. J. Thermofluids
,
18
, p.
100305
.
30.
Barghi Jahromi
,
M. S.
,
Kalantar
,
V.
,
Samimi Akhijahani
,
H.
, and
Kargarsharifabad
,
H.
,
2022
, “
Recent Progress on Solar Cabinet Dryers for Agricultural Products Equipped With Energy Storage Using Phase Change Materials
,”
J. Energy Storage
,
51
, p.
104434
.
31.
Gilago
,
M. C.
, and
Chandramohan
,
V. P.
,
2023
, “
Study of Drying Parameters of Pineapple and Performance of Indirect Solar Dryer Supported With Thermal Energy Storage: Comparing Passive and Active Modes
,”
J. Energy Storage
,
61
, p.
106810
.
32.
Ebrahimi
,
H.
,
Samimi Akhijahani
,
H.
, and
Salami
,
P.
,
2021
, “
Improving the Thermal Efficiency of a Solar Dryer Using Phase Change Materials at Different Position in the Collector
,”
Sol. Energy
,
220
, pp.
535
551
.
33.
Jagadeesh
,
D.
,
Vivekanandan
,
M.
,
Natarajan
,
A.
, and
Chandrasekar
,
S.
,
2020
, “
Experimental Conditions to Identify the Ideal Shape of Dryer Investigation of Six Shapes of Solar Greenhouse Dryer in No Load
,”
Mater. Today Proc.
,
37
(
Part 2
), pp.
395
403
.
34.
Kale
,
S. G.
, and
Havaldar
,
S. N.
,
2023
, “
Performance Enhancement Techniques for Indirect Mode Solar Dryer: A Review
,”
Mater. Today Proc.
,
72
, pp.
1117
1124
.
35.
Heydari
,
A.
,
2022
, “
Experimental Analysis of Hybrid Dryer Combined With Spiral Solar Air Heater and Auxiliary Heating System: Energy, Exergy and Economic Analysis
,”
Renewable Energy
,
198
, pp.
1162
1175
.
36.
Gilago
,
M. C.
,
Mugi
,
V. R.
, and
Chandramohan
,
V. P.
,
2022
, “
Investigation of Exergy-Energy and Environ-Economic Performance Parameters of Active Indirect Solar Dryer for Pineapple Drying Without and With Energy Storage Unit
,”
Sustain. Energy Technol. Assess.
,
53
, p.
102701
.
37.
Atalay
,
H.
,
Yavaş
,
N.
, and
Turhan Çoban
,
M.
,
2022
, “
Sustainability and Performance Analysis of a Solar and Wind Energy Assisted Hybrid Dryer
,”
Renewable Energy
,
187
, pp.
1173
1183
.
38.
Philip
,
N.
,
Duraipandi
,
S.
, and
Sreekumar
,
A.
,
2022
, “
Techno-Economic Analysis of Greenhouse Solar Dryer for Drying Agricultural Produce
,”
Renewable Energy
,
199
, pp.
613
627
.
39.
Nukulwar
,
M. R.
, and
Tungikar
,
V. B.
,
2022
, “
Recent Development of the Solar Dryer Integrated With Thermal Energy Storage and Auxiliary Units
,”
Therm. Sci. Eng. Prog.
,
29
, p.
101192
.
40.
Mathew
,
A. A.
,
Thangavel
,
V.
,
Mandhare
,
N. A.
, and
Nukulwar
,
M. R.
,
2023
, “
Latent and Sensible Heat Thermal Storage in a Heat Pipe-Based Evacuated Tube Solar Dryer: A Comparative Performance Analysis
,”
J. Energy Storage
,
57
, p.
106305
.
41.
Verma
,
G.
,
Dewangan
,
N.
,
Ghritlahre
,
H. K.
,
Verma
,
M.
,
Kumar
,
S.
,
Kumar
,
Y.
, and
Agrawal
,
S.
,
2023
, “
Experimental Investigation of Mixed Mode Ultraviolet Tent House Solar Dryer Under Natural Convection Regime
,”
Sol. Energy
,
251
, pp.
51
67
.
42.
Gomes
,
L. A. C. N.
,
Gonçalves
,
R. F.
,
Martins
,
M. F.
, and
Sogari
,
C. N.
,
2023
, “
Assessing the Suitability of Solar Dryers Applied to Wastewater Plants: A Review
,”
J. Environ. Manage.
,
326
(
Pt. A
), p.
116640
.
43.
Jamaleddine
,
T. J.
, and
Ray
,
M. B.
,
2010
, “
Application of Computational Fluid Dynamics for Simulation of Drying Processes: A Review
,”
Dry. Technol.
,
28
(
2
), pp.
120
154
.
44.
Menter
,
F. R.
,
2012
,
Best Practice: Scale-Resolving Simulations in ANSYS CFD
.
45.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
46.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation κ-ω Turbulence Models for Aerodynamic Flows
,”
AIAA 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
Orlando, FL
,
July 6–9
.
47.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer
,
Antalya, Turkey
,
Oct. 12–17
,
Begell House Inc.
,
West Redding, CT
, pp.
625
632
.
48.
Roberto Croce
,
M. G.
, and
Schweitzer
,
M. A.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education
,
Harlow, UK
.
49.
ANSYS Fluent Tutorial Guide 18
,
2018
, “
ANSYS Fluent Tutorial Guide 18
,”
ANSYS Fluent Tutor. Guid. 18
,
15317
, pp.
724
746
.
50.
Lingayat
,
A.
, and
Chandramohan
,
V. P.
,
2021
, “
Numerical Investigation on Solar Air Collector and Its Practical Application in the Indirect Solar Dryer for Banana Chips Drying With Energy and Exergy Analysis
,”
Therm. Sci. Eng. Prog.
,
26
, p.
101077
.
51.
Ekka
,
J. P.
,
Muthukumar
,
P.
,
Bala
,
K.
,
Kanaujiya
,
D. K.
, and
Pakshirajan
,
K.
,
2021
, “
Performance Studies on Mixed-Mode Forced Convection Solar Cabinet Dryer Under Different Air Mass Flow Rates for Drying of Cluster Fig
,”
Sol. Energy
,
229
, pp.
39
51
.
You do not currently have access to this content.