Abstract

Compact sizing of fin-and-tube heat exchangers is quite possible by integrating longitudinal vortex generators with the baseline fins. As geometry of the vortex generators is an important design parameter, the thrust of this three-dimensional numerical investigation is to identify the most favorable geometry of winglet type generators, if it exists. For that purpose, a thermo-hydraulic assessment of all the geometric designs, without any bias in the selection of potential contenders, is obligatory. Although past studies have reported the effect of winglet geometry on the performance augmentation, the selected designs were either biased or too less to draw conclusions. Each winglet design may be identified based on the geometric aspect ratio of the generators, which is varied over a wide range (0.5–1.5) in this study. Multiple favorable positions are considered, for installing the winglets around the tubes, before arriving at the favorable geometric design(s). Although highest thermal augmentation is delivered by the generators bearing smallest aspect ratio, linearized highest thermo-hydraulic augmentation is achieved when the ratio equals 0.85 irrespective of the generators’ position. After ascertaining the promising designs, their applicability is examined over a range of Reynolds number which spans from 2122 to 6367. Later part of the study discusses the change in the thermal and flow characteristics of the heat exchanger, due to variations in the winglet geometry. A study of the flow structures makes it evident that the spread of the longitudinal vortices widens, with eventual dissipation, in the flow direction, which has a discernible effect on the heat flux distribution over the fin surface. The study pertaining to the local changes suggests that the surfaces of both fins as well as the tubes undergo heat transfer augmentations, and the degree of augmentation grows with the decreasing aspect ratio of the vortex generators.

References

1.
Tiggelbeck
,
S.
,
Mitra
,
N.
, and
Fiebig
,
M.
,
1992
, “
Flow Structure and Heat Transfer in a Channel With Multiple Longitudinal Vortex Generators
,”
Exp. Therm. Fluid. Sci.
,
5
(
4
), pp.
425
436
.
2.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Taylor & Francis
,
New York
.
3.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid. Sci.
,
11
(
3
), pp.
295
309
.
4.
Wang
,
Q.
,
Zeng
,
M.
,
Ma
,
T.
,
Du
,
X.
, and
Yang
,
J.
,
2014
, “
Recent Development and Application of Several High Efficiency Surface Heat Exchangers for Energy Conversion and Utilization
,”
Appl. Energy
,
135
, pp.
748
777
.
5.
Huisseune
,
H.
,
T’Joen
,
C.
,
Jaeger
,
P. D.
,
Ameel
,
B.
,
Schampheleire
,
S. D.
, and
Paepe
,
M. D.
,
2013
, “
Performance Enhancement of a Louvered Fin Heat Exchanger by Using Delta Winglet Vortex Generators
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
475
487
.
6.
Tiggelbeck
,
S.
,
Mitra
,
N.
, and
Fiebig
,
M.
,
1994
, “
Comparison of Wing Type Vortex Generators for Heat Transfer Enhancement in Channel Flows
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
4
), pp.
880
885
.
7.
Arora
,
A.
,
Subbarao
,
P. M. V.
, and
Agarwal
,
R. S.
,
2015
, “
Numerical Optimization of Location of ‘Common Flow Up’ Delta Winglets for Inline Aligned Finned Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
82
, pp.
329
340
.
8.
Leu
,
J. S.
,
Wu
,
Y. H.
, and
Jang
,
J. Y.
,
2004
, “
Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers With a Pair of Block Shape Vortex Generators
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4327
4338
.
9.
Chu
,
P.
,
He
,
Y. L.
,
Lei
,
Y. G.
,
Tian
,
L. T.
, and
Li
,
R.
,
2009
, “
Three-Dimensional Numerical Study on Fin-and-Oval-Tube Heat Exchanger With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
859
876
.
10.
Wang
,
L. B.
,
Ke
,
F.
,
Gao
,
S. D.
, and
Mei
,
Y. G.
,
2002
, “
Local and Average Characteristics of Heat/Mass Transfer Over Flat Tube Bank Fin With Four Vortex Generators Per Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
3
), pp.
546
552
.
11.
Gong
,
J.
,
Min
,
C.
,
Qi
,
C.
,
Wang
,
E.
, and
Tian
,
L.
,
2013
, “
Numerical Simulation of Flow and Heat Transfer Characteristics in Wavy Fin-and-Tube Heat Exchanger With Combined Longitudinal Vortex Generators
,”
Int. Commun. Heat Mass Transfer
,
43
, pp.
53
56
.
12.
Tang
,
L. H.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2009
, “
Experimental and Numerical Investigation on Air-Side Performance of Fin-and-Tube Heat Exchangers With Various Fin Patterns
,”
Exp. Therm. Fluid. Sci.
,
33
(
5
), pp.
818
827
.
13.
Jain
,
A.
,
Biswas
,
G.
, and
Maurya
,
D.
,
2003
, “
Winglet-Type Vortex Generators With Common-Flow-Up Configuration for Fin-Tube Heat Exchangers
,”
Numer. Heat Transfer A: Appl.
,
43
(
2
), pp.
201
219
.
14.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2007
, “
A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
9
), pp.
1156
1167
.
15.
He
,
Y. L.
,
Han
,
H.
,
Tao
,
W. Q.
, and
Zhang
,
Y. W.
,
2012
, “
Numerical Study of Heat-Transfer Enhancement by Punched Winglet-Type Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5449
5458
.
16.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2008
, “
Heat Transfer Enhancement by Winglet Type Vortex Generator Arrays in Compact Plain Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
31
(
1
), pp.
87
97
.
17.
Tian
,
L.
,
He
,
Y.
,
Tao
,
Y.
, and
Tao
,
W.
,
2009
, “
A Comparative Study on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchanger With Punched Delta Winglets in Staggered and In-Line Arrangements
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1765
1776
.
18.
Agarwal
,
S.
, and
Sharma
,
R. P.
,
2016
, “
Numerical Investigation of Heat Transfer Enhancement Using Hybrid Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031007
.
19.
Khan
,
T. A.
, and
Li
,
W.
,
2018
, “
Optimal Configuration of Vortex Generator for Heat Transfer Enhancement in a Plate-Fin Channel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021013
.
20.
Oneissi
,
M.
,
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Lemenand
,
T.
,
2019
, “
Inclination Angle Optimization for “Inclined Projected Winglet Pair” Vortex Generator
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011014
.
21.
Che
,
M.
, and
Elbel
,
S.
,
2022
, “
Comparison of Local and Averaged Air-Side Heat Transfer Coefficients on Fin-and-Tube Heat Exchangers Obtained With Experimental and Numerical Methods
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
7
), p.
071013
.
22.
Sinha
,
A.
,
Raman
,
K. A.
,
Chattopadhyay
,
H.
, and
Biswas
,
G.
,
2013
, “
Effects of Different Orientations of Winglet Arrays on the Performance of Plate-Fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
202
214
.
23.
Gorji
,
M.
,
Mirgolbabaei
,
H.
,
Barari
,
A.
,
Domairry
,
G.
, and
Nadim
,
N.
,
2011
, “
Numerical Analysis on Longitudinal Location Optimization of Vortex Generator in Compact Heat Exchangers
,”
Int. J. Numer. Meth. Fluids
,
66
(
6
), pp.
705
713
.
24.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Kim
,
N. H.
,
2015
,
Principles of Heat and Mass Transfer
, 7th ed.,
Wiley
,
New York
.
25.
Fluent Inc.
,
2004
,
FLUENT User Guide
,
Fluent Incorporated
,
Lebanon, NH
.
26.
Arora
,
A.
,
Subbarao
,
P. M. V.
, and
Agarwal
,
R. S.
,
2016
, “
Development of Parametric Space for the Vortex Generator Location for Improving Thermal Compactness of an Existing Inline Fin and Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
98
, pp.
727
742
.
27.
Zhang
,
Y. H.
,
Wu
,
X.
,
Wang
,
L. B.
,
Song
,
K. W.
,
Dong
,
Y. X.
, and
Liu
,
S.
,
2008
, “
Comparison of Heat Transfer Performance of Tube Bank Fin With Mounted Vortex Generators to Tube Bank Fin With Punched Vortex Generators
,”
Exp. Therm. Fluid. Sci.
,
33
(
1
), pp.
58
66
.
28.
Kwak
,
K. M.
,
Torii
,
K.
, and
Nishino
,
K.
,
2005
, “
Simultaneous Heat Transfer Enhancement and Pressure Loss Reduction for Finned-Tube Bundles With the First or Two Transverse Rows of Built-In Winglets
,”
Exp. Therm. Fluid. Sci.
,
29
(
5
), pp.
625
632
.
29.
Sinha
,
A.
,
Chattopadhyay
,
H.
,
Iyengar
,
A. K.
, and
Biswas
,
G.
,
2016
, “
Enhancement of Heat Transfer in a Fin-Tube Heat Exchanger Using Rectangular Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
101
, pp.
667
681
.
You do not currently have access to this content.