Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The Earth's atmosphere receives approximately 1353 W m−2 of energy emitted by the Sun, is the primary source of radiation, and provides most of the energy available to life on Earth. The aim of this research is to study the optical and thermal performance of parabolic trough solar collectors (PTSC), considering internal parameters and meteorological conditions. A three-dimensional numerical model was developed and approved. An in-depth parametric analysis was conducted on the numerous factors influencing the thermal behavior of the collector. To perfect the absorber tube's exposure to solar radiation throughout the day, we have developed an electrical circuit that enables the PTSC to track the sun. All solar flux received by the concentrator is efficiently directed to the absorber surface, maximizing solar energy capture. Our system is thus both cost-effective and efficient in maximizing the use of the solar energy received. The behavior of this circuit was simulated using isis software to verify its functionality. Using the finite volume method with the ansys fluent 3D CFD tool, we conducted a complete analysis and resolution of the system of equations. We evaluated the performance of the PTSC as a function of mass flowrate and type of heat transfer fluid. When the mass flowrate increases from 0.001 kg s−1 to 0.003 kg s−1, energy production rises from 4.0555 kWh to 4.1309 kWh over 23 h. As far as the heat transfer fluid is concerned, the thermal oil is an efficient heat transfer fluid, with an energy output of 4.8972 kWh.

References

1.
Chang
,
C.
,
Sciacovelli
,
A.
,
Wu
,
Z.
,
Li
,
X.
,
Li
,
Y.
,
Zhao
,
M.
,
Deng
,
J.
,
Wang
,
Z.
, and
Ding
,
Y.
,
2018
, “
Enhanced Heat Transfer in a Parabolic Trough Solar Receiver by Inserting Rods and Using Molten Salt as Heat Transfer Fluid
,”
Appl. Energy
,
220
, pp.
337
350
.
2.
McGlade
,
C.
, and
Ekins
,
P.
,
2015
, “
The Geographical Distribution of Fossil Fuels Unused When Limiting Global Warming to 2 °C
,”
Nature
,
517
(
7533
), pp.
187
190
.
3.
Chen
,
Q.
,
Wang
,
W.
,
Lu
,
J.
, and
Ding
,
J.
,
2013
, “
An Overview of the Political, Technical and Economical Aspects of Gas-Fired Distributed Energy System in China
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
531
537
.
4.
Peng
,
H.
,
Li
,
R.
,
Ling
,
X.
, and
Dong
,
H.
,
2015
, “
Modeling on Heat Storage Performance of Compressed Air in a Packed Bed System
,”
Appl. Energy
,
160
, pp.
1
9
.
5.
Chang
,
C.
,
2016
, “
Tracking Solar Collection Technologies for Solar Heating and Cooling Systems
,”
Advances in Solar Heating and Cooling
, Woodhead Publishing Series in Energy, Sawston, UK, pp.
81
93
.
6.
Chang
,
C.
,
Wu
,
Z.
,
Navarro
,
H.
,
Li
,
C.
,
Leng
,
G.
,
Li
,
X.
,
Yang
,
M.
,
Wang
,
Z.
, and
Ding
,
Y.
,
2017
, “
Comparative Study of the Transient Natural Convection in an Underground Water Pit Thermal Storage
,”
Appl. Energy
,
208
, pp.
1162
1173
.
7.
Messaouda
,
A.
,
Hazami
,
M.
,
Mehdaoui
,
F.
,
Hamdi
,
M.
,
Noro
,
M.
,
Lazzarin
,
R.
, and
Guizani
,
A. A.
,
2020
, “
Thermal Performance Study of a Vacuum Integrated Solar Storage Collector (ISSC) With Compound Parabolic Concentrator (CPC)
,”
Int. J. Energy Res.
,
44
(
2
), pp.
756
770
.
8.
Pathak
,
P. K.
,
Chandra
,
P.
, and
Raj
,
G.
,
2019
, “
Comparative Analysis of Single- and Dual-Purpose Corrugated Plate Solar Collector by Force Convection
,”
Heat Transf.—Asian Res
,
48
(
6
), pp.
2387
2401
.
9.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Thermal Enhancement of Parabolic Trough Collector With Internally Finned Absorbers
,”
Sol. Energy
,
157
, pp.
514
531
.
10.
Abbas
,
M. S.
,
Sapit
,
A.
,
Baqer
,
N. M.
,
Balla
,
H. H.
, and
Hayder
,
A. M.
,
2019
, “
Performance Assessment of Parabolic Trough Collector (PTC) by Using Three Passes Receiver for Preheating the Fuel Oil Under Iraq Climate for Different Mass Flow Rates
,”
Int. J. Mech. Mechatron. Eng.
,
19
(
5
), pp.
132
141
. http://eprints.uthm.edu.my/id/eprint/6917
11.
Kalidasan
,
B.
,
Shankar
,
R.
, and
Srinivas
,
T.
,
2016
, “
Absorber Tube With Internal Hinged Blades for Solar Parabolic Trough Collector
,”
Energy Procedia
,
90
, pp.
463
469
.
12.
Purohit
,
I.
, and
Purohit
,
P.
,
2017
, “
Technical and Economic Potential of Concentrating Solar Thermal Power Generation in India
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
648
667
.
13.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2015
, “
A Novel Parabolic Trough Solar Collector Model—Validation With Experimental Data and Comparison to Engineering Equation Solver (EES)
,”
Energy Convers. Manag.
,
106
, pp.
268
281
.
14.
Amani
,
K.
,
Ebrahimpour
,
M.
,
Akbarzadeh
,
S.
, and
Valipour
,
M. S.
,
2020
, “
The Utilization of Conical Strip Inserts in a Parabolic Trough Collector
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1625
1631
.
15.
Khan
,
M. S.
,
Yan
,
M.
,
Ali
,
H. M.
,
Amber
,
K. P.
,
Bashir
,
M. A.
,
Akbar
,
B.
, and
Javed
,
S.
,
2020
, “
Comparative Performance Assessment of Different Absorber Tube Geometries for Parabolic Trough Solar Collector Using Nanofluid
,”
J. Therm. Anal. Calorim.
,
142
(
6
), pp.
2227
2241
.
16.
Bellos
,
E.
,
Daniil
,
I.
, and
Tzivanidis
,
C.
,
2018
, “
Multiple Cylindrical Inserts for Parabolic Trough Solar Collector
,”
Appl. Therm. Eng.
,
143
, pp.
80
89
.
17.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2014
, “
Heat Transfer and Thermodynamic Performance of a Parabolic Trough Receiver With Centrally Placed Perforated Plate Inserts
,”
Appl. Energy
,
136
, pp.
989
1003
.
18.
García-Valladares
,
O.
, and
Velázquez
,
N.
,
2009
, “
Numerical Simulation of Parabolic Trough Solar Collector: Improvement Using Counter Flow Concentric Circular Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
597
609
.
19.
Akbarzadeh
,
S.
, and
Valipour
,
M. S.
,
2018
, “
Heat Transfer Enhancement in Parabolic Trough Collectors: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
92
, pp.
198
218
.
20.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Numerical Analysis of Heat Transfer Enhancement in a Parabolic Trough Collector Based on Geometry Modifications and Working Fluid Usage
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p. 051009.
21.
Sánchez
,
W. E.
,
Jiménez
,
M. P.
,
Mantilla
,
C. A.
,
Toro
,
J. M.
,
Villa
,
M. A.
, and
Sinchiguano
,
G.
,
2018
, “
Design and Implementation of a Parabolic Cylinder Collector With Solar Tracking to Obtain Hot Water
,”
E3S Web Conf.
,
57
, pp.
1
5
.
22.
Paul
,
D. I.
,
2019
, “
Optical Performance Analysis and Design Optimisation of Multisectioned Compound Parabolic Concentrators for Photovoltaics Application
,”
Int. J. Energy Res.
,
43
(
1
), pp.
358
378
.
23.
Jaramillo
,
O. A.
,
Aguilar
,
J. O.
,
Castrejón-García
,
R.
,
Venegas-Reyes
,
E.
, and
Sosa-Montemayor
,
F.
,
2013
, “
Parabolic Trough Concentrators for Hot Water Generation: Comparison of the Levelized Cost of Production
,”
J. Renewable Sustainable
,
5
(
2
).
24.
Ravi Kumar
,
K.
, and
Reddy
,
K. S.
,
2009
, “
Thermal Analysis of Solar Parabolic Trough With Porous Disc Receiver
,”
Appl. Energy
,
86
(
9
), pp.
1804
1812
.
25.
Sebbar
,
E. H.
,
Oubenmoh
,
S.
,
Ait Msaad
,
A.
,
Hamdaoui
,
S.
,
Mahdaoui
,
M.
, and
El Rhafiki
,
T.
,
2023
, “
Optimization of Geometrical Parameters of a Solar Collector Coupled With a Thermal Energy Storage System
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
9
), p. 091007.
26.
Reddy
,
K. S.
,
Ravi Kumar
,
K.
, and
Ajay
,
C. S.
,
2015
, “
Experimental Investigation of Porous Disc Enhanced Receiver for Solar Parabolic Trough Collector
,”
Renewable Energy
,
77
, pp.
308
319
.
27.
Fatouh
,
M.
,
Saad
,
N.
, and
Abdala
,
A. M. M.
,
2023
, “
Effects of Fins Base Rounding on Heat Transfer Characteristics of Absorber Tube of Parabolic Trough Collector
,”
Arab. J. Sci. Eng.
,
48
(
3
), pp.
2851
2871
.
28.
Kumar
,
B. N.
, and
Reddy
,
K. S.
,
2018
, “
Comparison of Two-Phase Flow Correlations for Thermo- Hydraulic Modeling of Direct Steam Generation in a Solar Parabolic Trough Collector System
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p. 041005.
29.
Jaramillo
,
O. A.
,
Venegas-Reyes
,
E.
,
Aguilar
,
J. O.
,
Castrejón-García
,
R.
, and
Sosa-Montemayor
,
F.
,
2013
, “
Parabolic Trough Concentrators for Low Enthalpy Processes
,”
Renewable Energy
,
60
, pp.
529
539
.
30.
Wang
,
F.
,
Shuai
,
Y.
,
Yuan
,
Y.
,
Yang
,
G.
, and
Tan
,
H.
,
2010
, “
Thermal Stress Analysis of Eccentric Tube Receiver Using Concentrated Solar Radiation
,”
Sol. Energy
,
84
(
10
), pp.
1809
1815
.
31.
Odeh
,
S. D.
,
Behnia
,
M.
, and
Morrison
,
G. L.
,
2000
, “
Hydrodynamic Analysis of Direct Steam Generation Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
122
(
1
), pp.
14
22
.
32.
Zheng
,
Z. J.
,
Xu
,
Y.
, and
He
,
Y. L.
,
2016
, “
Thermal Analysis of a Solar Parabolic Trough Receiver Tube With Porous Insert Optimized by Coupling Genetic Algorithm and CFD
,”
Sci. China Technol. Sci.
,
59
(
10
), pp.
1475
1485
.
33.
Okonkwo
,
E. C.
,
Essien
,
E. A.
,
Kavaz
,
D.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2019
, “
Olive Leaf-Synthesized Nanofluids for Solar Parabolic Trough Collector—Thermal Performance Evaluation
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p. 041009.
34.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube
,”
Renewable Energy
,
94
, pp.
213
222
.
35.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Daniil
,
I.
,
2016
, “
The Use of Gas Working Fluids in Parabolic Trough Collectors—An Energetic and Exergetic Analysis
,”
Appl. Therm. Eng.
,
109
, pp.
1
14
.
36.
Bellos
,
E.
,
Korres
,
D.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2016
, “
Design, Simulation and Optimization of a Compound Parabolic Collector
,”
Sustain. Energy Technol. Assessments
,
16
, pp.
53
63
.
37.
Khullar
,
V.
,
Mahendra
,
P.
, and
Mittal
,
M.
,
2018
, “
Applicability of Heat Mirrors in Reducing Thermal Losses in Concentrating Solar Collectors
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p. 061004.
38.
Sadaghiyani
,
O. K.
,
Pesteei
,
S. M.
, and
Mirzaee
,
I.
,
2014
, “
Numerical Study on Heat Transfer Enhancement and Friction Factor of LS-2 Parabolic Solar Collector
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
012001
.
39.
Muñoz-Anton
,
J.
,
Biencinto
,
M.
,
Zarza
,
E.
, and
Díez
,
L. E.
,
2014
, “
Theoretical Basis and Experimental Facility for Parabolic Trough Collectors at High Temperature Using Gas as Heat Transfer Fluid
,”
Appl. Energy
,
135
, pp.
373
381
.
40.
Silva
,
R.
,
Berenguel
,
M.
,
Pérez
,
M.
, and
Fernández-Garcia
,
A.
,
2014
, “
Thermo-Economic Design Optimization of Parabolic Trough Solar Plants for Industrial Process Heat Applications With Memetic Algorithms
,”
Appl. Energy
,
113
, pp.
603
614
.
You do not currently have access to this content.