Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article mainly introduces the design of a thermal control system for laser communication payload. First, the commonly used thermal control technologies for spacecraft and the development of new thermal control technologies in recent years are introduced. Second, the structure and task characteristics of the laser communication payload are presented. Then, the thermal design of the laser communication payload is carried out with a combination of active and passive thermal control methods. To ensure the stability of the optical system, two separate shades are used in the design. Finally, a thermal balance test and in-orbit verification are conducted. The result of the thermal balance test indicates that the temperature range of the optical system is 20.9–22.1 °C. When in orbit, the temperature range of the optical system is 19.7–20.3 °C. The thermal balance test and in-orbit temperature meet the requirements of thermal control indicators, indicating that the thermal design scheme is correct and feasible.

References

1.
Chen
,
L. H.
,
Wu
,
Q. W.
, and
Liu
,
W. Q.
,
2008
, “
Thermal Design for Space Cameras
,”
Acta Phototnica Sinica
,
37
(
10
), pp.
2039
2042
.
2.
Iwata
,
N.
,
Usui
,
T.
, and
Miki
,
A.
,
2013
, “
Thermal Control Design of X-Ray Astronomy Satellite ASTRO-H
,”
International Conference on Environmental Systems
.
3.
Zhong
,
Q.
,
Wen
,
Y. P.
, and
Li
,
G. Q.
,
2007
, “
Influences of Near-Earth Thermal Environment Parameters on Spacecraft Temperature: A First Review
,”
Spacecr. Eng.
,
16
(
3
), pp.
73
77
.
4.
Lu
,
W.
,
Huang
,
J. R.
, and
Zhong
,
Q.
,
2011
, “
External Heat Flux on Manned Transport Spacecraft With Multiple Modes and Attitudes
,”
Chin. Space Sci. Technol.
,
31
(
1
), pp.
24
32
. https:// doi.org/10.3780/j.issn.1000-758X.2011.01.004
5.
Li
,
G. Q.
,
Jia
,
H.
, and
Liu
,
Q.
,
2001
, “
Analysis for Some Factors Affecting the Temperature Distribution of a CCD Camera
,”
Chin. Space Sci. Technol.
,
21
(
5
), pp.
62
70
. https://doi.org/CNKI:SUN:ZGKJ.0.2001-05-009
6.
Giesen
,
P.
, and
Folgering
,
E.
,
2003
, “
Design Guidelines for Thermal Stability in Opto-Mechanical Instruments
,”
SPIE
,
5176
, pp.
126
134
.
7.
Yang
,
W. G.
,
Yu
,
L.
, and
Chen
,
R. L.
,
2009
, “
Thermal Control Design ang Validation for High Resolution Space Camera
,”
Acta Photonica Sinica
,
38
(
9
), pp.
2363
2367
. https://doi.org/JournalArticle/5af40679c095d718d8150838
8.
Miao
,
J. Y.
, and
Zhong
,
Q.
,
2018
,
Spacecraft Thermal Control Technology
,
Beijing Institute of Technology Press
,
Beijing, China
, pp.
106
107
.
9.
Xiang
,
Y. C.
,
Liu
,
Z. J.
, and
Ning
,
X. W.
,
2022
, “
Review of Thermal Control Technology in Chinese Lunar Probe
,”
Spacecr. Eng.
,
31
(
2
), pp.
29
34
.
10.
Hu
,
Y. X.
,
Zhang
,
L. H.
, and
Gao
,
Y.
,
2022
, “
Analysis of Key Technologies of Spacecraft for Gravitational Waves Detection in Space
,”
Spacecr. Eng.
,
31
(
4
), pp.
1
7
.
11.
Guo
,
Y. D.
,
Zhou
,
Q.
, and
Liu
,
X. T.
,
2022
, “
Research on 35 K Cryogenic Refrigeration and Heat Transfer Integrated System
,”
Vac. Cryog.
,
28
(
3
), pp.
353
358
.
12.
Wu
,
C. J.
,
Yan
,
C. X.
, and
Gao
,
Z. L.
,
2013
, “
Overview of Space Laser Communications
,”
Chin. Opt.
,
6
(
5
), pp.
670
680
.
13.
Jiao
,
Z. K.
,
2015
,
Research on Key Technologies in Intersatellite Optical Communication
,
Institute of Optics and Eletronics, Chinese Academy of Sciences
,
Chengdu
.
14.
Xue
,
Z. Y.
,
2015
,
Research on Acquisition and Tracking Technologies in Satellite Optical Communication
,
Institute of Optoelectronics Technology, Chinese Academy of Sciences
, pp.
1
5
.
15.
Jiang
,
Q. Q.
,
2011
,
Analysis of the Influence of Atmospheric Turbulence on the Performance of Partially Coherent Laser Communication
,
Xidian University
, pp.
1
6
.
16.
Li
,
B.
,
Wang
,
T. F.
, and
Wang
,
D. N.
,
2012
, “
Simulation of Laser Beam Propagation Through Turbulence
,”
Chin. Opt.
,
5
(
3
), pp.
289
295
. https://doi.org/CNKI:SUN:ZGGA.0.2012-03-016
17.
Jiang
,
H. L.
,
An
,
Y.
, and
Zhang
,
Y. L.
,
2015
, “
Analysis of the Status Quo, Development Trend and Key Technologies of Space Laser Communication
,”
J. Spacecr. TT&C Technol.
,
34
(
3
), pp.
207
217
.
18.
Meng
,
H. H.
,
Geng
,
L. Y.
, and
Li
,
G. Q.
,
2014
, “
Thermal Control Design and Experiment for Laser Communication Equipment
,”
Infrared Laser Eng.
,
7
, pp.
2295
2299
.
19.
Beck
,
T.
,
Bieler
,
A.
, and
Thomas
,
N.
,
2012
, “
Numerical Thermal Mathematical Model Correlation to Thermal Balance Test Using Adaptive Particle Swarm Optimization (APSO)
,”
Appl. Therm. Eng.
,
38
, pp.
168
174
.
20.
Emanuel
,
E.
,
Diaz
,
M.
, and
Zagal
,
J. C.
,
2016
, “
Evolutionary Design of a Satellite Thermal Control System: Real Experiments for a Cubesat Mission
,”
Appl. Therm. Eng.
,
105
, pp.
490
500
.
21.
Li
,
S. J.
,
Chen
,
L. H.
, and
Liu
,
S.
,
2023
, “
Thermal Analysis Model Correction Method Based on Latin Hypercube Sampling and Coordinate Rotation Method
,”
J. Therm. Stresses
,
46
(
9
), pp.
857
870
.
You do not currently have access to this content.