Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The objective of this study is to investigate the impact of different porous metal samples on the hydro-thermal characteristics of a single cylinder with porous fins using computational fluid dynamics. Commercially used porous samples with pore densities of 10, 20, and 40 PPI were used in this study for heat recovery from exhaust flue gas. The three-dimensional computational domain with porous aluminum fins attached to a tube over which high-temperature exhaust gas flows in a crossflow arrangement mimics a waste heat recovery system. Computations were performed at Reynolds number of 6000–9000, using the realizable κ-ϵ turbulence model. Three fin diameter-to-tube diameter ratios (Df /D = 2, 2.5, and 3) were considered. The local thermal nonequilibrium model is implemented for energy transfer, as it is more accurate for a high-temperature gradient scenario in a waste heat recovery system. The foam sample with the highest pore density was observed to have the highest pressure drop due to low permeability. A maximum heat transfer and Nusselt number were achieved for a 40 PPI foam sample due to a reduced flowrate inside the porous zone. The overall performance of metal foam samples at varying fin diameters was evaluated based on the area goodness factor (j/f) and a heat transfer coefficient ratio to pumping power per unit heat transfer surface (Z/E). The analysis of these two parameters suggests using 20 PPI foam at Df /D = 2.

References

1.
Kumar
,
A.
,
Kumar
,
K.
,
Kaushik
,
N.
,
Sharma
,
S.
, and
Mishra
,
S.
,
2010
, “
Renewable Energy in India: Current Status and Future Potentials
,”
Renewable Sustainable Energy Rev.
,
14
(
8
), pp.
2434
2442
.
2.
Panwar
,
N. L.
,
Kaushik
,
S. C.
, and
Kothari
,
S.
,
2011
, “
Role of Renewable Energy Sources in Environmental Protection: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1513
1524
.
3.
Haidar
,
J. G.
, and
Ghojel
,
J. I.
,
2001
, “
Waste Heat Recovery From the Exhaust of Low-Power Diesel Engine Using Thermoelectric Generators
,”
Proceedings ICT2001. 20 International Conference on Thermoelectrics
,
Beijing, China
,
June 8–11
,
IEEE
, pp.
413
418
.
4.
Brückner
,
S.
,
Liu
,
S.
,
Miró
,
L.
,
Radspieler
,
M.
,
Cabeza
,
L. F.
, and
Lävemann
,
E.
,
2015
, “
Industrial Waste Heat Recovery Technologies: An Economic Analysis of Heat Transformation Technologies
,”
Appl Energy
,
151
, pp.
157
167
.
5.
Endo
,
T.
,
Kawajiri
,
S.
,
Kojima
,
Y.
,
Takahashi
,
K.
,
Baba
,
T.
,
Ibaraki
,
S.
,
Takahashi
,
T.
, and
Shinohara
,
M.
,
2007
, “
Study on Maximizing Exergy in Automotive Engines
,”
SAE Trans.
,
116
, pp.
347
356
.
6.
Jouhara
,
H.
,
Khordehgah
,
N.
,
Almahmoud
,
S.
,
Delpech
,
B.
,
Chauhan
,
A.
, and
Tassou
,
S. A.
,
2018
, “
Waste Heat Recovery Technologies and Applications
,”
Ther. Sci. Eng. Prog.
,
6
, pp.
268
289
.
7.
Vesely
,
L.
,
Kapat
,
J. S.
,
Bringhenti
,
C.
,
Tomita
,
J. T.
,
Stoia
,
M. F.
, and
Jui
,
K.
,
2022
, “
sCO2 Waste Heat Recovery System in Aircraft Engine
,”
AIAA Scitech 2022 Forum
,
San Diego, CA
,
Jan. 3–7
, .p.
1407
.
8.
Xu
,
Y.
,
Yan
,
Z.
, and
Xia
,
W.
,
2022
, “
A Novel System for Aircraft Cabin Heating Based on a Vapor Compression System and Heat Recovery From Engine Lubricating Oil
,”
Appl. Therm. Eng.
,
212
, p.
118544
.
9.
Shu
,
G.
,
Li
,
X.
,
Tian
,
H.
,
Shi
,
L.
,
Wang
,
X.
, and
Yu
,
G.
,
2017
, “
Design Condition and Operating Strategy Analysis of CO2 Transcritical Waste Heat Recovery System for Engine With Variable Operating Conditions
,”
Energy Convers. Manage.
,
142
, pp.
188
199
.
10.
Zhao
,
T.
,
Tian
,
H.
,
Shi
,
L.
,
Chen
,
T.
,
Ma
,
X.
,
Atik
,
M. A. R.
, and
Shu
,
G.
,
2020
, “
Numerical Analysis of Flow Characteristics and Heat Transfer of High-Temperature Exhaust Gas Through Porous Fins
,”
Appl. Therm. Eng
,.
165
, p.
114612
.
11.
Song
,
C.
,
Pan
,
W.
,
Srimat
,
S. T.
,
Zheng
,
J.
,
Li
,
Y.
,
Wang
,
Y.-H.
,
Xu
,
B.-Q.
, and
Zhu
,
Q.-M.
,
2004
, “
Tri-Reforming of Methane Over Ni Catalysts for CO2 Conversion to Syngas With Desired H2/CO Ratios Using Flue Gas of Power Plants Without CO2 Separation
,”
Stud. Surf. Sci. Catal.
,
153
, pp.
315
322
.
12.
Ravi
,
R.
,
Pachamuthu
,
S.
, and
Kasinathan
,
P.
,
2020
, “
Computational and Experimental Investigation on Effective Utilization of Waste Heat From Diesel Engine Exhaust Using a Fin Protracted Heat Exchanger
,”
Energy
,
200
, p.
117489
.
13.
Raje
,
M.
, and
Dhiman
,
A. K.
,
2023
, “
Three-Dimensional CFD Study on Thermo-Hydraulic Behaviour of Finned Tubes in a Heat Exchange System for Heat Transfer Enhancement
,”
Chem. Prod. Process Model.
,
18
(
6
), pp.
931
944
.
14.
Yih
,
J.
, and
Wang
,
H.
,
2020
, “
Experimental Characterization of Thermal-Hydraulic Performance of a Microchannel Heat Exchanger for Waste Heat Recovery
,”
Energy Convers Manage.
,
204
, p.
112309
.
15.
Zolfagharnasab
,
M. H.
,
Pedram
,
M. Z.
,
Hoseinzadeh
,
S.
, and
Vafai
,
K.
,
2022
, “
Application of Porous-Embedded Shell and Tube Heat Exchangers for the Waste Heat Recovery Systems
,”
Appl. Therm. Eng.
,
211
, p.
118452
.
16.
Jamshed
,
S.
, and
Dhiman
,
A. K.
,
2023
, “
Analysis of the Laminar Flow and Enhanced Heat Transfer Rate Through a Triangular Array of Cylinders Embedded in a Fluid-Saturated Porous Media With Mixed Convection
,”
Numer. Heat Transfer, Part A
,
84
(
9
), pp.
1032
1053
.
17.
Karana
,
D. R.
, and
Sahoo
,
R. R.
,
2018
, “
Effect on TEG Performance for Waste Heat Recovery of Automobiles Using MgO and ZnO Nanofluid Coolants
,”
Case Stud. Therm. Eng.
,
12
, pp.
358
364
.
18.
Raje
,
M.
, and
Dhiman
,
A. K.
,
2022
, “
Three-Dimensional Analysis of the Thermal and Hydraulic Performance of Finned and Un-Finned Tubes in a Staggered Array
,”
Ther. Sci. Eng. Prog.
,
36
, p.
101532
.
19.
Raje
,
M.
, and
Dhiman
,
A. K.
,
2024
, “
Numerical Investigation on Thermal-Hydraulic Performance of Leeward Cut Annular Finned Tubes in Crossflow Heat Exchangers: An Insight on Fin Material Saving
,”
Int. J. Therm. Sci.
,
202
, p.
109100
.
20.
Han
,
X.-H.
,
Wang
,
Q.
,
Park
,
Y.-G.
,
T’Joen
,
C.
,
Sommers
,
A.
, and
Jacobi
,
A.
,
2012
, “
A Review of Metal Foam and Metal Matrix Composites for Heat Exchangers and Heat Sinks
,”
Heat Transfer Eng.
,
33
(
12
), pp.
991
1009
.
21.
Muley
,
A.
,
Kiser
,
C.
,
Sundén
,
B.
, and
Shah
,
R. K.
,
2012
, “
Foam Heat Exchangers: A Technology Assessment
,”
Heat Transfer Eng.
,
33
(
1
), pp.
42
51
.
22.
Jamshed
,
S.
, and
Dhiman
,
A.
,
2021
, “
Channel-Confined Wake Structure Interactions Between Two Permeable Side-by-Side Bars of a Square Cross-Section
,”
ASME J Fluids Eng.
,
143
(
9
), p.
091301
.
23.
Naito
,
H.
, and
Fukagata
,
K.
,
2012
, “
Numerical Simulation of Flow Around a Circular Cylinder Having Porous Surface
,”
Phys. Fluids
,
24
(
11
), p.
117102
.
24.
Rashidi
,
S.
,
Kashefi
,
M. H.
,
Kim
,
K. C.
, and
Samimi-Abianeh
,
O.
,
2019
, “
Potentials of Porous Materials for Energy Management in Heat Exchangers—A Comprehensive Review
,”
Appl Energy
,
243
, pp.
206
232
.
25.
Habibishandiz
,
M.
, and
Saghir
,
M. Z.
,
2022
, “
A Critical Review of Heat Transfer Enhancement Methods in the Presence of Porous Media, Nanofluids, and Microorganisms
,”
Ther. Sci. Eng. Prog.
,
30
, p.
101267
.
26.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2008
, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3701
3711
.
27.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
28.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
572
578
.
29.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.
30.
Bhattacharyya
,
S.
, and
Singh
,
A. K.
,
2011
, “
Reduction in Drag and Vortex Shedding Frequency Through Porous Sheath Around a Circular Cylinder
,”
Int. J. Numer. Methods Fluids
,
65
(
6
), pp.
683
698
.
31.
Odabaee
,
M.
,
Hooman
,
K.
, and
Gurgenci
,
H.
,
2011
, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Cylinder in Cross-Flow
,”
Transp. Porous Media
,
86
(
3
), pp.
911
923
.
32.
Rashidi
,
S.
,
Tamayol
,
A.
,
Valipour
,
M. S.
, and
Shokri
,
N.
,
2013
, “
Fluid Flow and Forced Convection Heat Transfer Around a Solid Cylinder Wrapped With a Porous Ring
,”
Int. J. Heat Mass Transfer
,
63
, pp.
91
100
.
33.
Chumpia
,
A.
, and
Hooman
,
K.
,
2014
, “
Performance Evaluation of Single Tubular Aluminium Foam Heat Exchangers
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
266
273
.
34.
Chumpia
,
A.
, and
Hooman
,
K.
,
2015
, “
Performance Evaluation of Tubular Aluminum Foam Heat Exchangers in Single Row Arrays
,”
Appl. Therm. Eng.
,
83
, pp.
121
130
.
35.
Boules
,
D.
,
Sharqawy
,
M. H.
, and
Ahmed
,
W. H.
,
2021
, “
Enhancement of Heat Transfer From a Horizontal Cylinder Wrapped With Whole and Segmented Layers of Metal Foam
,”
Int. J. Heat Mass Transfer
,
165
, p.
120675
.
36.
Wang
,
Y.
,
Shu
,
G.
,
Yu
,
G.
,
Tian
,
H.
,
Ma
,
X.
, and
Chen
,
T.
,
2018
, “
Numerical Analysis of Forced Convection of High-Temperature Exhaust Gas Around a Metal-Foam Wrapped Cylinder
,”
Int. J. Heat Mass Transfer
,
119
, pp.
742
751
.
37.
Chen
,
K.
,
Guo
,
L.
,
Xie
,
X.
, and
Liu
,
W.
,
2018
, “
Experimental Investigation on Enhanced Thermal Performance of Staggered Tube Bundles Wrapped With Metallic Foam
,”
Int. J. Heat Mass Transfer
,
122
, pp.
459
468
.
38.
Mao
,
S.
,
Love
,
N.
,
Leanos
,
A.
, and
Rodriguez-Melo
,
G.
,
2014
, “
Correlation Studies of Hydrodynamics and Heat Transfer in Metal Foam Heat Exchangers
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
104
118
.
39.
Odabaee
,
M.
, and
Hooman
,
K.
,
2012
, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Tube Bank
,”
Appl. Therm. Eng.
,
36
, pp.
456
463
.
40.
Alvandifar
,
N.
,
Saffar-Avval
,
M.
, and
Amani
,
E.
,
2018
, “
Partially Metal Foam Wrapped Tube Bundle as a Novel Generation of Air Cooled Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
118
, pp.
171
181
.
41.
Kiwan
,
S.
, and
Al-Nimr
,
M. A.
,
2001
, “
Using Porous Fins for Heat Transfer Enhancement
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
790
795
.
42.
Kahalerras
,
H.
, and
Targui
,
N.
,
2008
, “
Numerical Analysis of Heat Transfer Enhancement in a Double Pipe Heat Exchanger With Porous Fins
,”
Int. J. Numer. Methods Heat Fluid Flow
,
18
(
5
), pp.
593
617
.
43.
Abu-Hijleh
,
B. A. K.
,
2003
, “
Enhanced Forced Convection Heat Transfer From a Cylinder Using Permeable Fins
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
804
811
.
44.
Kiwan
,
S.
,
Alwan
,
H.
, and
Abdelal
,
N.
,
2020
, “
An Experimental Investigation of the Natural Convection Heat Transfer From a Vertical Cylinder Using Porous Fins
,”
Appl. Therm. Eng.
,
179
, p.
115673
.
45.
Jamin
,
Y. L.
, and
Mohamad
,
A. A.
,
2007
, “
Enhanced Heat Transfer Using Porous Carbon Foam in Cross Flow—Part I: Forced Convection
,”
ASME J. Heat Transfer
,
129
(
6
), pp.
735
742
.
46.
Jamshed
,
S.
,
Kharbanda
,
R.
, and
Dhiman
,
A. K.
,
2022
, “
Study of Flow Through and Around a Pair of Porous Cylinders Covering Steady and Unsteady Regimes
,”
Phys. Fluids
,
34
(
10
), p.
103601
.
47.
Torabi
,
M.
,
Karimi
,
N.
,
Zhang
,
K.
, and
Peterson
,
G. P.
,
2016
, “
Generation of Entropy and Forced Convection of Heat in a Conduit Partially Filled With Porous Media–Local Thermal Non-Equilibrium and Exothermicity Effects
,”
Appl. Therm. Eng.
,
106
, pp.
518
536
.
48.
Yang
,
Y.-T.
, and
Hwang
,
M.-L.
,
2009
, “
Numerical Simulation of Turbulent Fluid Flow and Heat Transfer Characteristics in Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
2956
2965
.
49.
Nimvari
,
M. E.
,
Maerefat
,
M.
, and
El-Hossaini
,
M. K.
,
2012
, “
Numerical Simulation of Turbulent Flow and Heat Transfer in a Channel Partially Filled With a Porous Media
,”
Int. J. Therm. Sci.
,
60
, pp.
131
141
.
50.
Carbonell
,
R. G.
, and
Whitaker
,
S.
,
1984
, “Heat and Mass Transfer in Porous Media,”
Fundamentals of Transport Phenomena in Porous Media
,
J.
Bear
, and
M. Y.
Corapcioglu
, eds.,
Springer
,
Dordrecht
, pp.
121
198
.
51.
Zanotti
,
F.
, and
Carbonell
,
R. G.
,
1984
, “
Development of Transport Equations for Multiphase Systems—III: Application to Heat Transfer in Packed Beds
,”
Chem. Eng. Sci.
,
39
(
2
), pp.
299
311
.
52.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Metal Foams
,”
Doctoral thesis
,
University of Colorado
,
Boulder, CO
.
53.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2751
2761
.
54.
Zukauskas
,
A.
,
1987
, “Convective Heat Transfer in Cross Flow,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
55.
Hamadouche
,
A.
,
Nebbali
,
R.
,
Benahmed
,
H.
,
Kouidri
,
A.
, and
Bousri
,
A.
,
2016
, “
Experimental Investigation of Convective Heat Transfer in an Open-Cell Aluminum Foams
,”
Exp. Therm. Fluid Sci.
,
71
, pp.
86
94
.
56.
Cengel
,
A.
,
2003
,
Heat Transfer
,
McGraw-Hill
,
New York
.
57.
Kumar
,
A.
,
Joshi
,
J. B.
, and
Nayak
,
A. K.
,
2017
, “
A Comparison of Thermal-Hydraulic Performance of Various Fin Patterns Using 3D CFD Simulations
,”
Int. J. Heat Mass Transfer
,
109
, pp.
336
356
.
58.
Thulukkanam
,
K.
,
2013
,
Heat Exchanger Design Handbook
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.