Abstract

As the main energy consumption part of the central air-conditioning systems, the energy saving of the chilled water system is particularly crucial. This system realizes heat exchange with indoor air by delivering chilled water to air-conditioning units, effectively regulating indoor temperature and humidity to ensure thermal comfort. In this article, an improved multi-objective coati optimization algorithm (IMOCOA) is used to optimize the operating parameters and thermal comfort environment parameters of chilled water systems to improve thermal comfort and reduce energy consumption. The algorithm introduces chaotic mapping to enhance search diversity, balances global and local search capabilities through Levy flight and Gauss variation strategies, and uses location greedy choices to help coatis jump out of local optima. To verify the optimization effect of IMOCOA, a multi-objective optimization model was established, combining the energy consumption model of the chilled water system and the simplified thermal comfort model. Key parameters, including chilled water supply temperature, pump speed ratio, indoor temperature, and relative humidity, are optimized. The simulation results from the experiments show that the average energy-saving rate of the chilled water system using IMOCOA is 7.8% and thermal comfort is improved by 19.6%. Compared to other optimization algorithms, this method demonstrates a better optimization effect.

References

1.
Ye
,
Y.
,
Zuo
,
W.
, and
Wang
,
G.
,
2019
, “
A Comprehensive Review of Energy-Related Data for U.S. Commercial Buildings
,”
Energy Build.
,
186
, pp.
126
137
.
2.
Takabatake
,
T.
,
Yamamoto
,
M.
, and
Hino
,
H.
,
2022
, “
Algorithm for Searching Optimal Set Values of Absorption Chiller System Using Bayesian Optimization
,”
Sci. Technol. Built Environ.
,
28
(
2
), pp.
188
199
.
3.
Fayazbakhsh
,
M. A.
,
Bagheri
,
F.
, and
Bahrami
,
M.
,
2015
, “
A Self-Adjusting Method for Real-Time Calculation of Thermal Loads in HVAC-R Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041012
.
4.
Li
,
Q.
,
Zhou
,
Y.
,
Wei
,
F.
,
Long
,
Z.
,
Li
,
J.
,
Ma
,
Y.
,
Zhou
,
G.
,
Liu
,
J.
,
Yan
,
P.
, and
Yu
,
D.
,
2024
, “
Harmonizing Comfort and Energy: A Multi-Objective Framework for Central Air Conditioning Systems
,”
Energy Convers. Manage.
,
314
, p.
118651
.
5.
Li
,
W.
,
Wang
,
S.
, and
Koo
,
C.
,
2021
, “
A Real-Time Optimal Control Strategy for Multi-Zone VAV Air-Conditioning Systems Adopting a Multi-Agent Based Distributed Optimization Method
,”
Appl. Energy
,
287
, p.
116605
.
6.
Fayazbakhsh
,
M. A.
,
Bagheri
,
F.
, and
Bahrami
,
M.
,
2015
, “
A Resistance-Capacitance Model for Real-Time Calculation of Cooling Load in HVAC-R Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041008
.
7.
Kelvin Wijaya
,
T.
,
Idrus Alhamid
,
M.
,
Saito
,
K.
, and
Nasruddin
,
N.
,
2022
, “
Dynamic Optimization of Chilled Water Pump Operation to Reduce HVAC Energy Consumption
,”
Ther. Sci. Eng. Prog.
,
36
, p.
101512
.
8.
Li
,
H.
,
Shi
,
J.
,
Li
,
Z.
,
Yang
,
C.
,
Zhang
,
Y.
,
Liang
,
Z.
, and
Liu
,
Y.
,
2018
, “
A Group Control Method of Central Air-Conditioning Chilled Water Pumps with the Aim of Energy Saving
,”
2018 International Conference on Power System Technology, POWERCON 2018
,
Institute of Electrical and Electronics Engineers Inc.
,
Guangzhou, China
,
Nov. 6, 2018–Nov. 9, 2018
, pp.
4517
4524
.
9.
Chen
,
Z.
,
Chen
,
Y.
, and
Yang
,
C.
,
2022
, “
Impacts of Large Chilled Water Temperature Difference on Thermal Comfort, Equipment Sizes, and Energy Saving Potential
,”
J. Build. Eng.
,
49
, p.
104069
.
10.
Huang
,
S.
,
Zuo
,
W.
, and
Sohn
,
M. D.
,
2017
, “
Improved Cooling Tower Control of Legacy Chiller Plants by Optimizing the Condenser Water Set Point
,”
Build. Environ.
,
111
, pp.
33
46
.
11.
Li
,
J.
,
Wang
,
M.
,
Fang
,
P.
,
Zhao
,
Q.
,
Zheng
,
X.
, and
Gao
,
H.
,
2024
, “
Modeling and Optimization of a Passive Building HVAC System Based on Improved PSO and H-J Algorithm
,”
Energy Rep.
,
11
, pp.
2415
2438
.
12.
Alimohamadi
,
R.
, and
Jahangir
,
M. H.
,
2024
, “
Multi-Objective Optimization of Energy Consumption Pattern in Order to Provide Thermal Comfort and Reduce Costs in a Residential Building
,”
Energy Convers. Manage.
,
305
, p.
118214
.
13.
Ismail
,
N.
, and
Ouahrani
,
D.
,
2023
, “
A Comprehensive Optimization Study of Personal Cooling Radiant Desks Integrated to HVAC System for Energy Efficiency and Thermal Comfort in Office Buildings
,”
Int. J. Refrig.
,
156
, pp.
54
71
.
14.
Karami
,
M.
, and
Wang
,
L.
,
2018
, “
Particle Swarm Optimization for Control Operation of an All-Variable Speed Water-Cooled Chiller Plant
,”
Appl. Therm. Eng.
,
130
, pp.
962
978
.
15.
Satrio
,
P.
,
Mahlia
,
T. M.
,
Giannetti
,
N.
, and
Saito
,
K.
,
2019
, “
Optimization of HVAC System Energy Consumption in a Building Using Artificial Neural Network and Multi-Objective Genetic Algorithm
,”
Sustain. Energy Technol. Assess.
,
35
, pp.
48
57
.
16.
Dehghani
,
M.
,
Montazeri
,
Z.
,
Trojovská
,
E.
, and
Trojovský
,
P.
,
2023
, “
Coati Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
,”
Knowledge Based Syst.
,
259
, p.
110011
.
17.
Balavignesh
,
S.
,
Kumar
,
C.
,
Sripriya
,
R.
, and
Senjyu
,
T.
,
2024
, “
An Enhanced Coati Optimization Algorithm for Optimizing Energy Management in Smart Grids for Home Appliances
,”
Energy Rep.
,
11
, pp.
3695
3720
.
18.
Zhao
,
W.
,
Liu
,
Y.
,
Zhou
,
X.
,
Li
,
S.
,
Zhao
,
C.
,
Dou
,
C.
, and
Shu
,
H.
,
2024
, “
An Aeration Requirements Calculating Method Based on BOD5 Soft Measurement Model Using Deep Learning and Improved Coati Optimization Algorithm
,”
J. Water Process. Eng.
,
64
, p.
105693
.
19.
Yang
,
K.
,
Su
,
Y.-P.
,
Du
,
Q.
,
Ma
,
L.-L.
, and
Yang
,
J.-Y.
,
2024
, “
Bidirectional Long Short-Term Memory Neural Network Prediction Based on Multi-Objective Raccoon Optimization Algorithm
,”
Comput. Meas. Control
,
33
(
1
), pp.
1
12
.
20.
Ji
,
B.-X.
,
Liu
,
H.-H.
,
Cheng
,
P.
,
Ren
,
X.-Y.
,
Pi
,
H.-D.
, and
Li
,
L.-L.
,
2024
, “
Phased Optimization of Active Distribution Networks Incorporating Distributed Photovoltaic Storage System: A Multi-Objective Coati Optimization Algorithm
,”
J. Energy Storage
,
91
, p.
112093
.
21.
Sun
,
Y.
,
Xue
,
H.
,
Wang
,
W.
,
Wu
,
S.
,
Wu
,
Y.
,
Hong
,
Y.
, and
Deng
,
S.
,
2020
, “
Development of an Optimal Control Method of Chilled Water Temperature for Constant-Speed Air-Cooled Water Chiller Air Conditioning Systems
,”
Appl. Therm. Eng.
,
180
, p.
115802
.
22.
Lu
,
L.
,
Cai
,
W.
,
Xie
,
L.
,
Li
,
S.
, and
Soh
,
Y. C.
,
2005
, “
HVAC System Optimization – in-Building Section
,”
Energy Build.
,
37
(
1
), pp.
11
22
.
23.
Feng
,
Z.
,
Wang
,
W.
,
He
,
X.
,
Li
,
G.
,
Zhang
,
L.
, and
Xiang
,
W.
,
2023
, “
Energy Saving Optimization of Chilled Water System Based on Improved Fruit Fly Optimization Algorithm
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
8
), p.
081010
.
24.
Wu
,
J.
,
Li
,
X.
,
Lin
,
Y.
,
Yan
,
Y.
, and
Tu
,
J.
,
2020
, “
A PMV-Based HVAC Control Strategy for Office Rooms Subjected to Solar Radiation
,”
Build. Environ.
,
177
, p.
106863
.
25.
Broday
,
E. E.
,
Moreto
,
J. A.
,
Xavier
,
A. A. D. P.
, and
de Oliveira
,
R.
,
2019
, “
The Approximation Between Thermal Sensation Votes (TSV) and Predicted Mean Vote (PMV): A Comparative Analysis
,”
Int. J. Ind. Ergon.
,
69
, pp.
1
8
.
26.
Zhang
,
S.
, and
Lin
,
Z.
,
2020
, “
Extending Predicted Mean Vote Using Adaptive Approach
,”
Build. Environ.
,
171
, p.
106665
.
27.
Asif
,
A.
,
Zeeshan
,
M.
,
Khan
,
S. R.
, and
Sohail
,
N. F.
,
2022
, “
Investigating the Gender Differences in Indoor Thermal Comfort Perception for Summer and Winter Seasons and Comparison of Comfort Temperature Prediction Methods
,”
J. Therm. Biol.
,
110
, p.
103357
.
28.
Du
,
H.
,
Lian
,
Z.
,
Lai
,
D.
,
Duanmu
,
L.
,
Zhai
,
Y.
,
Cao
,
B.
,
Zhang
,
Y.
, et al
,
2022
, “
Evaluation of the Accuracy of PMV and Its Several Revised Models Using the Chinese Thermal Comfort Database
,”
Energy Build.
,
271
, p.
112334
.
29.
Wu
,
Z.
, and
Wang
,
C.
,
2022
, “
Limiting Spectral Distribution of Large Dimensional Spearman's Rank Correlation Matrices
,”
J. Multivar. Anal.
,
191
, p.
105011
.
30.
Zhou
,
Y.
,
Su
,
K.
, and
Shao
,
L.
,
2018
, “
A New Chaotic Hybrid Cognitive Optimization Algorithm
,”
Cogn. Syst. Res.
,
52
, pp.
537
542
.
31.
Adegboye
,
O. R.
,
Feda
,
A. K.
,
Ishaya
,
M. M.
,
Agyekum
,
E. B.
,
Kim
,
K.-C.
,
Mbasso
,
W. F.
, and
Kamel
,
S.
,
2023
, “
Antenna S-Parameter Optimization Based on Golden Sine Mechanism Based Honey Badger Algorithm with Tent Chaos
,”
Heliyon
,
9
(
11
), p.
e21596
.
32.
Baronchelli
,
A.
, and
Radicchi
,
F.
,
2013
, “
“Lévy Flights in Human Behavior and Cognition
,”
Chaos Solitons Fract.
,
56
, pp.
101
105
.
33.
Magdziarz
,
M.
, and
Zorawik
,
T.
,
2018
, “
Ergodic Properties of Lévy Flights Coexisting With Subdiffusion and Related Models
,”
J. Math. Anal. Appl.
,
458
(
2
), pp.
1373
1389
.
34.
Zhao
,
X.
,
Fang
,
Y.
,
Ma
,
S.
, and
Liu
,
Z.
,
2022
, “
Multi-Swarm Improved Moth–Flame Optimization Algorithm With Chaotic Grouping and Gaussian Mutation for Solving Engineering Optimization Problems
,”
Expert Syst. Appl.
,
204
, p.
117562
.
35.
Zhang
,
X.
,
Xu
,
Y.
,
Yu
,
C.
,
Heidari
,
A. A.
,
Li
,
S.
,
Chen
,
H.
, and
Li
,
C.
,
2020
, “
Gaussian Mutational Chaotic Fruit Fly-Built Optimization and Feature Selection
,”
Expert Syst. Appl.
,
141
, p.
112976
.
36.
Xu
,
X.
,
Wang
,
M.
,
Wang
,
Y.
, and
Ma
,
D.
,
2021
, “
Two-Stage Routing with Optimized Guided Search and Greedy Algorithm on Proximity Graph
,”
Knowledge Based Syst.
,
229
, p.
107305
.
37.
Dereventsov
,
A. V.
, and
Temlyakov
,
V. N.
,
2019
, “
A Unified Way of Analyzing Some Greedy Algorithms
,”
J. Funct. Anal.
,
277
(
12
), p.
108286
.
38.
Lee
,
W.-S.
,
Chen
,
Y.-T.
, and
Kao
,
Y.
,
2011
, “
Optimal Chiller Loading by Differential Evolution Algorithm for Reducing Energy Consumption
,”
Energy Build.
,
43
(
2
), pp.
599
604
.
39.
Ahmadi
,
M. H.
,
Sayyaadi
,
H.
,
Mohammadi
,
A. H.
, and
Barranco-Jimenez
,
M. A.
,
2013
, “
Thermo-Economic Multi-Objective Optimization of Solar Dish-Stirling Engine by Implementing Evolutionary Algorithm
,”
Energy Convers. Manage.
,
73
, pp.
370
380
.
40.
Abdollahi
,
G.
, and
Sayyaadi
,
H.
,
2013
, “
Application of the Multi-Objective Optimization and Risk Analysis for the Sizing of a Residential Small-Scale CCHP System
,”
Energy Build.
,
60
, pp.
330
344
.
You do not currently have access to this content.