A multizone model is used to predict both the self-pressurization and pressure control behavior of a ground-based experiment. The multizone model couples a finite element heat conduction model of the tank wall to the bulk conservation equations in the ullage and the liquid. Comparisons are made to the experimental data presented in a companion paper. Results suggest that the multizone model can predict self-pressurization behavior over a variety of test conditions. The model is also used to predict the pressure control behavior when a subcooled axial mixing jet is used to thermally destratify and cool the bulk liquid. For fast jet speeds, the multizone model does a reasonably predict the pressure collapse behavior. Comparisons were also made between the data and a homogeneous thermodynamic model. These comparisons highlight the deficiencies of the homogeneous modeling approach.

References

1.
Aydelott
,
J.
,
1967
, “
Normal Gravity Self-Pressurization of 9-Inch (23 cm) Diameter Spherical Liquid Hydrogen Tankage
,”
Report No. NASA TN D-4171
.
2.
Lin
,
C.
,
Dresar
,
N. V.
, and
Hasan
,
M.
,
2004
, “
Pressure Control Analysis of Cryogenic Storage Systems
,”
J. Propul. Power
,
20
(
3
), pp.
480
485
.10.2514/1.10387
3.
Forester
,
C.
,
1967
, “
Non-Equilibrium Storage and Expulsion of Single-Phase Cryogens
,”
Advances in Cryogenic Engineering
,
Plenum
,
New York
, Vol.
12
, pp.
82
91
.
4.
Riemer
,
D. H.
,
1986
, “
Cryogenic Tank Stratification: A Simpler Approach
,”
Advances in Cryogenic Engineering
,
Plenum
,
New York
, Vol.
31
, pp.
957
962
.
5.
Estey
,
P.
,
Lewis
,
D.
, and
Connor
,
M.
,
1983
, “
Prediction of a Propellant Tank Pressure History Using State Space Methods
,”
J. Spacecr. Rockets
,
20
(
1
), pp.
49
54
.10.2514/3.28355
6.
Epstein
,
M.
, and
Georgius
,
H.
,
1965
, “
A Generalized Propellant Tank-Pressurization Analysis
,”
Int. Advances in Cryogenic Engineering
,
Plenum
,
New York
, pp.
290
302
.
7.
Schallhorn
,
P.
,
Campbell
,
D.
,
Chase
,
S.
,
Piquero
,
J.
,
Fortenberry
,
C.
,
Li
,
X.
, and
Grob
,
L.
,
2006
, “
Upper Stage Tank Thermodynamic Modeling Using SINDA/FLUINT
,”
Paper No. AIAA 2006-5051
.
8.
Hedayat
,
A.
,
Hastings
,
L.
,
Bailey
,
J.
,
Flachbart
,
R.
, and
Holt
,
K.
,
2003
, “
Thermodynamic Venting System Modeling and Comparison With Liquid Hydrogen Test Data
,”
Paper No. AIAA 2003-4450
.
9.
Nguyen
,
H.
,
1994
, “
Zero-g Thermodynamic Venting System (TVS) Performance Prediction Program
,”
Rockwell Aerospace, Tech. Report
.
10.
Barnett
,
D.
,
Winstead
,
T.
, and
McReynolds
,
L.
,
1965
, “
An Investigation of Liquid-Hydrogen Stratification in a Large Cylindrical Tank of the Saturn Configuration
,”
Int. Advances in Cryogenic Engineering
,
Plenum
,
New York
, pp.
314
324
.
11.
Arnett
,
R.
, and
Voth
,
R.
,
1972
, “
A Computer Program for the Calculation of Thermal Stratification and Self-Pressurization in a Liquid Hydrogen Tank
,”
Report No. NASA CR 2026
.
12.
Lacovic
,
R.
,
Yeh
,
F.S.V.
,
Szabo
,
J.
,
Brun
,
R.
,
Stofan
,
A.
, and
Berns
,
J.
,
1968
, “
Management of Cryogenic Propellants in a Full Scale Orbiting Space Vehicle
,”
Report No. NASA TN D-4571
.
13.
Hochstein
,
J.
,
Ji
,
H.-C.
, and
Aydelott
,
J.
,
1986
, “
Effect of Subcooling on the On-Orbit Pressurization Rate of Cryogenic Propellant Tankage
,”
AIAA Paper No. 86-1253
.
14.
Hochstein
,
J.
,
Ji
,
H.-C.
, and
Aydelott
,
J.
,
1990
, “
Prediction of Self-Pressurization Rate of Cryogenic Propellant Tankage
,”
J. Propuls. Power
,
6
(
1
), pp.
11
17
.10.2514/3.23217
15.
Abdalla
,
K.
,
Frysinger
,
T.
, and
Androcchio
,
C.
,
1965
, “
Pressure-Rise Characteristics for a Liquid Hydryogen Dewar for Homogeneous, Normal Gravity, Quiescent, and Zero-Gravity Tests
,”
Report No. NASA TM X-1134
.
16.
Grayson
,
G.
,
Lopez
,
A.
,
Chandler
,
F.
,
Hastings
,
L.
, and
Tucker
,
S.
,
2006
, “
Cryogenic Tank Modeling for the Saturn AS-203 Experiment
,”
AIAA Paper No. 2006-5258
.
17.
Merte
,
H.
,
Clark
,
J.
, and
Barakat
,
H.
,
1968
, “
Finite Difference Solution of Stratification and Pressure Rise in Containers
,”
Heat Transfer Laboratory, University of Michigan
,
Tech Report No. 4
.
18.
Merte
,
H.
,
1970
, “
Transient Pressure Rise of a Liquid-Vapor System in a Closed Container Under Variable Gravity
,”
4th Int. Heat Transfer Conference
.
19.
Panzarella
,
C.
, and
Kassemi
,
M.
,
2003
, “
On the Validity of Purely Thermodynamic Descriptions of Two-Phase Cryogenic Fluid Storage
,”
J. Fluid Mechanics
,
484
, pp.
41
68
.10.1017/S0022112003004002
20.
Barsi
,
S.
, and
Kassemi
,
M.
,
2008
, “
Numerical and Experimental Comparisons of the Self-Pressurization Behavior of an lh2 Tank in Normal Gravity
,”
Cryogenics
,
48
(
3–4
), pp.
122
129
.10.1016/j.cryogenics.2008.01.003
21.
Barsi
,
S.
, and
Kassemi
,
M.
,
2012
, “
Investigation of Tank Pressurization and Pressure Control, Part 1: Experimental Study
,”
J. Therm. Sci. Eng. Appl.
,
135
, p.
TBD
.
22.
Barsi
,
S.
,
2011
, “
Ventless Pressure Control of Cryogenic Storage Tanks
,”
Ph.D. thesis
,
Case Western Reserve University
,
Cleveland, OH
.
23.
Schrage
,
R. W.
,
1953
,
A Theoretical Study of Interphase Mass Transfer
,
Columbia University
,
New York
.
24.
Means
,
J.
, and
Ulrich
,
R.
,
1975
, “
Transient Convective Heat Transfer During and After Gas Injection Into Containers
,”
ASME J. Heat Transfer
,
97
, pp.
282
287
.10.1115/1.3450356
25.
Lin
,
C.
,
Hasan
,
M.
, and
Dresar
,
N. V.
,
1994
, “
Experimental Investigation of Jet-Induced Mixing of a Large Hydrogen Storage Tank
,”
Report No. NASA TM 106629
.
26.
Brown
,
J.
,
Khoo
,
B.
, and
Sonin
,
A.
,
1990
, “
Rate Correlation for Condensation of Pure Vapor on Turbulent, Subcooled Liquid
,”
Int. J. Heat and Mass Transfer
,
33
(
9
), pp.
2001
2018
.10.1016/0017-9310(90)90230-R
You do not currently have access to this content.