A numerical study of high-speed hydrodynamic gas bearing performance is presented using both finite element and finite difference methods. Efficient numerical procedures are developed to analyze diffusive-convective thin film gas flows in some simple geometries. A novel direct finite element formulation employing a new class of shape functions is specially devised to solve the Reynolds equation for compressible fluids. The formulation is as computationally efficient as the classical upwind finite element schemes without introducing artificial diffusion into the solution. Bearing load-capacity, static stiffness coefficients and frequency-dependent force coefficients are calculated for gas-lubricated plane and Rayleigh step slider bearings. [S0742-4787(00)01701-X]

1.
Pan, C. H. T., 1990, “Gas Lubrication (1915–1990),” Achievements in Tribology, ASME Publication, pp. 31–55.
2.
Beskok
,
A.
,
Karniadakis
,
G. E.
, and
Trimmer
,
W.
,
1996
, “
Rarefaction and Compressibility Effects in Gas Microflows
,”
ASME J. Fluids Eng.
,
118
, pp.
448
456
.
3.
Burgdorfer
,
A.
,
1959
, “
The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic Gas Lubricated Bearings
,”
ASME J. Basic Eng.
,
81
, pp.
94
100
.
4.
Hsia
,
Y. T.
, and
Domoto
,
G. A.
,
1983
, “
An Experimental Investigation of Molecular Rarefaction Effects in Gas Lubricated Bearings at Ultra-low Clearances
,”
ASME J. Lubr. Technol.
,
105
, pp.
120
130
.
5.
Mitsuya
,
Y.
,
1993
, “
Modified Reynolds Equation for Ultra-thin Film Gas Lubrication Using 1.5-Order Slip-Flow Model and Considering Surface Accommodation Coefficient
,”
ASME J. Tribol.
,
115
, pp.
289
294
.
6.
Gans
,
R. F.
,
1985
, “
Lubrication Theory at Arbitrary Knudsen Number
,”
ASME J. Tribol.
,
107
, pp.
431
433
.
7.
Fukui
,
S.
, and
Kaneko
,
R.
,
1988
, “
Analysis of Ultra-thin Gas Film Lubrication Based on Linearized Boltzmann Equation—First Report— Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow
,”
ASME J. Tribol.
,
110
, pp.
253
262
.
8.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, Hemisphere Publishing Corporation.
9.
Cha
,
E.
, and
Bogy
,
D. B.
,
1995
, “
A Numerical Scheme for Static and Dynamic Simulation of Subambient Pressure Rail Sliders
,”
ASME J. Tribol.
,
117
, pp.
36
46
.
10.
Hu
,
Y.
, and
Bogy
,
D. B.
,
1998
, “
Solution of the Rarefied Gas Lubrication Equation Using an Additive Correction Based Multigrid Control Volume Method
,”
ASME J. Tribol.
,
120
, pp.
280
288
.
11.
Zheming
,
Z.
, and
Zheng
,
S.
,
1993
, “
A New Method for the Numerical Solution of the Reynolds Equation at Low Spacing
,”
ASME J. Tribol.
,
115
, pp.
83
87
.
12.
Xue
,
Y.
, and
Stolarski
,
T. A.
,
1997
, “
Numerical Prediction of the Performance of Gas-lubricated Spiral Groove Thrust Bearings
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
211
, pp.
117
128
.
13.
van der Stegen, R. H. M., 1997, “Numerical Modelling of Self-Acting Gas Lubricated Bearings with Experimental Verification,” Ph.D. dissertation, The University of Twente, The Netherlands.
14.
Garcia-Suarez, C., Bogy, D. B., and Talke, F. E., 1984, “Use of an Upwind Finite Element Scheme for Air-Bearing Calculations,” Tribology and Mechanics of Magnetic Storage Systems, ASLE Special Publication SP-16, pp. 90–96.
15.
Wahl
,
M. H.
,
Lee
,
P. R.
, and
Talke
,
F. E.
,
1996
, “
An Efficient Finite-Element Based Air Bearing Simulator for Pivoted Slider Bearings Using Bi-conjugate Gradient Algorithms
,”
STLE Tribology Trans.
,
39
, No.
1
, pp.
130
138
.
16.
Bonneau
,
D.
,
Huitric
,
J.
, and
Tournerie
,
B.
,
1993
, “
Finite Element Analysis of Grooved Gas Thrust Bearings and Grooved Gas Face Seals
,”
ASME J. Tribol.
,
115
, pp.
348
354
.
17.
Nguyen
,
S. H.
,
1994
, “A p-Version Finite Element Gas Bearing Program for Pivoted Calculations based on False Transient Response.”
Design
,
16
, pp.
1
14
.
18.
Castelli
,
V.
, and
Pirvics
,
J.
,
1968
, “
Review of Numerical Methods in Gas Bearing Film Analysis
,”
ASME J. Lubr. Technol.
,
90
, pp.
777
792
.
19.
Reddi
,
M. M.
, and
Chu
,
T. Y.
,
1970
, “
Finite Element Solution of the Steady-state Compressible Lubrication Problem
,”
ASME J. Lubr. Technol.
,
92
, pp.
495
503
.
20.
Zirkelback
,
N. L.
, and
San Andre´s
,
L.
,
1998
, “
Effect of Frequency Excitation on the Force Coefficients of Spiral Groove Gas Seals
,”
ASME J. Tribol.
,
121
, pp.
853
863
.
21.
Heinrich
,
J. C.
,
Huyakorn
,
P. S.
,
Zienkiewicz
,
O. C.
, and
Mitchell
,
A. R.
,
1977
, “
An Upwind Finite Element Scheme for Two-dimensional Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
, pp.
131
143
.
22.
Hughes
,
T. L. R.
,
1978
, “
A Simple Scheme for Developing “Upwind” Finite Elements
,”
Int. Numer. Methods Eng.
,
12
, pp.
1359
1365
.
23.
Hamrock, B. J., 1994, Fundamentals of Fluid Film Lubrication, McGraw-Hill, New York.
24.
DiPrima
,
R. C.
,
1968
, “
Asymptotic Methods for an Infinitely Long Slider Squeeze-Film Bearing
,”
ASME J. Lubr. Technol.
,
90
, pp.
173
183
.
You do not currently have access to this content.