A necessary step in understanding failure problems of tribological elements is to investigate the contact performance of rough surfaces subjected to frictional heating. It is essential that the interfacial variables are obtained through solving the interactive thermomechanical contact problem. This paper studies the three dimensional thermomechanical contact of non-conforming rough surfaces, the model of which includes the normal surface displacements caused by the contact pressure, frictional shear, and frictional heating. Influence coefficients and frequency response functions for elastic and thermoelastic displacements, as well as those for temperature rises, are investigated for model construction. In order to develop an accurate and efficient solver, the numerical algorithms with the discrete convolution and fast Fourier transform techniques and the single-loop conjugated gradient method are used. The model modules are numerically verified and the thermomechanical performance of the rough surfaces in a point contact is studied.

1.
Johnson, K. L., 1996, Contact Mechanics, Cambridge University Press.
2.
Kennedy, F. E., 1985, Thermomechanical Effects in Sliding Systems, Elsevier Sequoia S. A., New York.
3.
Ling, F. F., 1973, Surface Mechanics, Wiley, New York.
4.
Kennedy
,
F. E.
,
1984
, “
Thermal and Thermomechanical Effects in Dry Sliding
,”
Wear
,
100
, pp.
453
476
.
5.
Ting
,
B. Y.
, and
Winer
,
W. O.
,
1989
, “
Frictional-Induced Thermal Influences in Elastic Contact Between Spherical Asperities
,”
ASME J. Tribol.
,
111
, pp.
315
322
.
6.
Lu
,
C. T.
, and
Bryant
,
M. D.
,
1994
, “
Evaluation of Subsurface Stresses in a Thermal Mound with Application to Wear
,”
Wear
,
177
, pp.
15
24
.
7.
Liu
,
G.
,
Wang
,
Q.
, and
Lin
,
C.
,
1999
, “
A Survey of Current Models for Simulating the Contact Between Rough Surfaces
,”
Tribol. Trans.
,
42
, No.
3
, pp.
581
591
.
8.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
,
1991
, “
A Fast Solution of the Dry Contact Problem and the Associated Subsurface Stress-Field. Using Multilevel Techniques
,”
ASME J. Tribol.
,
113
, pp.
128
133
.
9.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
1999
, “
A New Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Technique
,”
Wear
,
231
, pp.
206
219
.
10.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact: Part I—Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
, pp.
493
500
.
11.
Hu
,
Y. Z.
,
Barber
,
G. C.
, and
Zhu
,
D.
,
1999
, “
Numerical Analysis for the Elastic Contact of Real Rough Surfaces
,”
Tribol. Trans.
,
42
, No.
3
, pp.
443
452
.
12.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts
,”
ASME J. Tribol.
,
122
, pp.
30
35
.
13.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
Fast Methods for Solving Rough Contact Problems: A Comparative Study
,”
ASME J. Tribol.
,
122
, pp.
36
41
.
14.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
, No.
1-2
, pp.
101
111
.
15.
Lee
,
S. C.
, and
Cheng
,
H. S.
,
1992
, “
On the Relation of Load to Average Gap in the Contact Between Surfaces With Longitudinal Roughness
,”
Tribol. Trans.
,
35
, No.
3
, pp.
523
529
.
16.
Jiang
,
X.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X.
, and
Lee
,
S. C.
,
1999
, “
A Mixed Elastohydrodynamic Lubrication Model with Asperity Contact
,”
ASME J. Tribol.
,
121
, pp.
481
491
.
17.
Shi
,
F.
, and
Salant
,
R. F.
,
2000
, “
A Mixed Soft Elastohydrodynamic Lubrication Model with Interasperity Cavitation and Surface Shear Deformation
,”
ASME J. Tribol.
,
122
, pp.
308
316
.
18.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
, pp.
1
9
.
19.
Mow
,
V. C.
, and
Cheng
,
H. S.
,
1967
, “
Thermal Stresses in an Elastic Half-Space Associated with an Arbitrary Distributed Moving Heat Source
,”
J. Appl. Math. Phys. (ZAMP)
18
, pp.
500
507
.
20.
Mercier
,
R. J.
,
Malkin
,
S.
, and
Mollendorf
,
J. C.
,
1978
, “
Thermal Stresses from a Moving Band Source of Heat on the Surface of a Semi-infinite Solid
,”
ASME J. Eng. Ind.
,
100
, pp.
43
48
.
21.
Tseng
,
M. L.
, and
Burton
,
R. A.
,
1982
, “
Thermal Stress in a Two-dimensional (Plane Stress) Half-space for a Moving Heat Input
,”
Wear
,
79
, pp.
1
9
.
22.
Ju
,
F. D.
, and
Liu
,
J. C.
,
1988
, “
Effect of Peclet Number in Thermo-Mechanical Cracking Due to High-Speed Friction Load
,”
ASME J. Tribol.
,
110
, pp.
217
221
.
23.
Kulkarni
,
S. M.
,
Rubin
,
C. A.
, and
Hahn
,
G. T.
,
1991
, “
Elasto-Plastic Coupled Temperature-Displacement Finite Element Analysis of Two-dimensional Rolling-Sliding Contact with a Translating Heat Source
,”
ASME J. Tribol.
,
113
, pp.
93
101
.
24.
Goshima
,
T.
, and
Keer
,
L. M.
,
1990
, “
Thermoelastic Contact Between a Rolling Rigid Indenter and a Damaged Elastic Body
,”
ASME J. Tribol.
,
112
, pp.
382
391
.
25.
Huang
,
J. H.
, and
Ju
,
F. D.
,
1985
, “
Thermomechanical Cracking Due to Moving Frictional Loads
,”
Wear
,
102
, pp.
81
104
.
26.
Blok, H., 1937, “Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions,” Proc. General Discussion on Lubrication and Lubricants, London, 2, Institution of Mechanical Engineers, London, pp. 222–235.
27.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
Proc. R. Soc. New South Wales
,
76
, pp.
203
224
.
28.
Tian
,
X.
, and
Kennedy
,
F. E.
,
1994
, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
,
116
, pp.
167
173
.
29.
Qiu
,
L.
, and
Cheng
,
H. S.
,
1998
, “
Temperature Rise Simulation of Three-Dimensional Rough Surfaces in Mixed Lubricated Contact
,”
ASME J. Tribol.
,
120
, pp.
310
318
.
30.
Gao
,
J. Q.
,
Lee
,
S. C.
, and
Ai
,
X. L.
,
2000
, “
An FFT-Based Transient Flash Temperature Model for General Three-Dimensional Rough Surface Contacts
,”
ASME J. Tribol.
,
122
, pp.
519
523
.
31.
Wang
,
Q.
, and
Liu
,
G.
,
1999
, “
A Thermoelastic Asperity Contact Model Considering Steady-State Heat Transfer
,”
STLE Tribol. Trans.
,
42
, No.
4
, pp.
763
770
.
32.
Liu
,
G.
, and
Wang
,
Q.
,
2000
, “
Thermoelastic Asperity Contacts, Frictional Shear, and Parameter Correlations
,”
ASME J. Tribol.
,
122
, pp.
300
307
.
33.
Barber
,
J. R.
,
1972
, “
Distortion of the Semi-Infinite Solid Due to Transient Surface Heating
,”
Int. J. Mech. Sci.
,
14
, pp.
377
393
.
34.
Poon
,
C. Y.
, and
Sayler
,
R. S.
,
1994
, “
Numerical Contact Model for a Smooth Ball on an Anisotropic Rough Surface
,”
ASME J. Tribol.
,
116
, pp.
194
201
.
35.
Ren
,
N.
, and
Lee
,
S. C.
,
1993
, “
Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method
,”
ASME J. Tribol.
,
115
, pp.
597
601
.
36.
Ahmadi, N., 1982, “Non-Hertzian Normal and Tangential Loading of Elastic Bodies in Contact,” Ph.D. dissertation, Northwestern University, Evanston, IL.
37.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, London.
38.
Brandt
,
A.
, and
Lubrecht
,
A. A.
,
1990
, “
Multilevel Matrix Multiplication and Fast Solution of Integral-Equations
,”
J. Comput. Phys.
,
90
, pp.
348
370
.
39.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in Fortran 77—The Art of Scientific Computing, (second edition), Cambridge University Press, Cambridge, Chpts. 12, 13.
40.
Ju
,
Y.
, and
Farris
,
T. N.
,
1996
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
,
118
, pp.
320
328
.
You do not currently have access to this content.