A three-dimensional elastic-plastic contact code based on semi-analytical method is presented and validated. The contact is solved within a Hertz framework. The reciprocal theorem with initial strains is then introduced, to express the surface geometry as a function of contact pressure and plastic strains. The irreversible nature of plasticity leads to an incremental formulation of the elastic-plastic contact problem, and an algorithm to solve this problem is set up. Closed form expression, which give residual stresses and surface displacements from plastic strains, are obtained by integration of the reciprocal theorem. The resolution of the elastic-plastic contact using the finite element (FE) method is discussed, and the semi-analytical code presented in this paper is validated by comparing results with experimental data from the nano-indentation test. Finally, the resolution of the rolling elastic-plastic contact is presented for smooth and dented surfaces and for a vertical or rolling loading. The main advantage of this code over classical FE codes is that the calculation time makes the transient analysis of three-dimensional contact problems affordable, including when a fine mesh is required.

1.
Lamagne`re
,
P.
,
Fouge`res
,
R.
,
Lormand
,
G.
,
Vincent
,
A.
,
Girodin
,
D.
,
Dudragne
,
G.
, and
Vergne
,
F.
,
1998
, “
A Physically Based Model for Endurance Limit of Bearing Steels
,”
ASME J. Tribol.
,
120
, pp.
421
426
.
2.
Barber
,
J. R.
, and
Ciavarella
,
M.
,
2000
, “
Contact Mechanics
,”
Int. J. Solids Struct.
,
37
, pp.
29
43
.
3.
Tichy
,
J. A.
, and
Meyer
,
D. M.
,
2000
, “
Review of Solid Mechanics in Tribology
,”
Int. J. Solids Struct.
,
37
, pp.
391
400
.
4.
Archard, J. F., Hunt, R. T., and Onions, R. A., 1975, “Stylus Profilometry and the Analysis of the Contact of Rough Surfaces,” The Mechanics of the Contact Between Deformable Bodies, Delft University Press, pp. 282–303.
5.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
6.
Zhao
,
Y. W.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
, pp.
86
93
.
7.
Hahn
,
G. T.
,
Bhargava
,
V.
,
Rubin
,
C. A.
,
Chan
,
Q.
, and
Kim
,
K.
,
1987
, “
Analysis of the Rolling Contact Residual Stresses and Cyclic Plastic Deformation of SAE 52100 Steel Ball Bearings
,”
ASME J. Tribol.
,
109
, pp.
618
626
.
8.
Gupta
,
V.
,
Hahn
,
G. T.
,
Bastias
,
P. C.
, and
Rubin
,
C. A.
,
1995
, “
Contribution of Surface Irregularities to Rolling Contact Plasticity in Bearing Steels
,”
ASME J. Tribol.
,
117
, pp.
660
666
.
9.
Dang Van
,
K.
, and
Maitournam
,
M. H.
,
1993
, “
Steady-State Flow in Classical Elastoplasticity: Applications to Repeated Rolling and Sliding Contact
,”
J. Mech. Phys. Solids
,
41
(
11
), pp.
1691
1710
.
10.
Hearle
,
A. D.
, and
Johnson
,
K. L.
,
1987
, “
Cumulative Plastic Flow in Rolling and Sliding Line Contact
,”
ASME J. Appl. Mech.
,
54
, pp.
1
7
.
11.
Virmoux, P., Inglebert, G., and Gras, R., 1994, “Characterisation of Elastic-Plastic Behaviour for Contact Purposes on Surface Hardened Materials,” Proc., 20th Leeds-Lyon Symposium on Tribology, Lyon, France, 7–10 September 1993, Tribology series, Elsevier, 27, pp. 287–301.
12.
Mayeur
,
C.
,
Sainsot
,
P.
, and
Flamand
,
L.
,
1995
, “
A Numerical Elastoplastic Model for Rough Contact
,”
ASME J. Tribol.
,
117
, pp.
422
429
.
13.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts
,”
ASME J. Tribol.
,
122
, pp.
30
35
.
14.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
,
1991
, “
A Fast Solution for the Dry Contact Problem and the Associated Subsurface Stress Field, Using Multilevel Techniques
,”
ASME J. Tribol.
,
113
, pp.
128
133
.
15.
Xu
,
G.
,
Sadeghi
,
F.
, and
Hoeprich
,
M.
,
1997
, “
Residual Stresses Due to Debris Effects in EHL Contacts
,”
Tribol. Trans.
,
40
, pp.
613
621
.
16.
Liu
,
G.
,
Wang
,
Q.
, and
Liu
,
S.
,
2001
, “
A Three-Dimensional Thermal-Mechanical Asperity Contact Model for Two Nominally Flat Surfaces in Contact
,”
ASME J. Tribol.
,
123
, pp.
595
602
.
17.
Jacq, C., Lormand, G., Vincent, A., Ne´lias, D., and Dudragne, G., “On the Influence of Residual Stresses on the Determination of the Microplasticity Properties of a Nitrided Steel by Nano-Indentation,” to appear in Materials Science and Engineering.
18.
Brebbia, L. C., 1980, The Boundary Element Method for Engineers, Pentech Press, London.
19.
Mayeur, C., 1995, “Mode´lisation du contact rugueux e´lastoplastique,” Ph.D. Thesis, INSA Lyon, France.
20.
Blomerus
,
P. M.
,
Hills
,
D. A.
, and
Kelly
,
P. A.
,
1999
, “
The Distributed Dislocation Method Applied to the Analysis of Elastoplastic Strain Concentrations
,”
J. Mech. Phys. Solids
,
47
, pp.
1007
1026
.
21.
Coulon, S., Ville, F., and Ne´lias, D., 2001, “Numerical and Experimental Investigations on Rolling Contact Fatigue for Dented Surfaces,” Proc., 27th Leeds-Lyon Symposium on Tribology, Lyon, France, 5–8 September 2000, Tribology series, Elsevier, 39, pp. 459–467.
22.
Love, A. E. H., 1952, A Treatise on the Mathematical Theory of Elasticity, 4th Ed. Cambridge University Press, Cambridge.
23.
Chiu
,
Y. P.
,
1978
, “
On the Stress Field and Surface Deformation in a Half-Space With a Cuboidal Zone in which Initial Strains Are Uniform
,”
ASME J. Appl. Mech.
,
45
, pp.
302
306
.
24.
Chiu
,
Y. P.
,
1977
, “
On the Stress Field due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space
,”
ASME J. Appl. Mech.
,
44
, pp.
587
590
.
25.
Vergne, F., 1985, “Calcul des de´placements et des contraintes dans un demi-espace e´lastique charge´ en surface par des actions distribue´es normales et tangentielles quelconques,” M.Sc. Thesis, INSA Lyon, France.
26.
Sainsot, P., Jacq, C., and Ne´lias, D., “A Numerical Model for Elastoplastic Rough Contact,” to appear in Computer Modeling in Engineering & Sciences.
27.
Lemaı^tre, L., Chaboche, J. L., 1988, Me´canique des mate´riaux solides, Dunod, Paris.
28.
El Ghazal, H., 1999, “Etude des proprie´te´s microstructurales et me´caniques des aciers 16NiCrMo13 ce´mente´ et 32CrMoV13 nitrure´-Application a` la pre´vision de leur limite d’endurance en fatigue de roulement,” Ph.D. Thesis, INSA Lyon, France.
You do not currently have access to this content.