The analysis of the mixed lubrication phenomena in journal and axial bearings represents nowadays the next step towards a better understanding of these devices, subjected to more and more severe operating conditions. While the theoretical bases required for an in-depth analysis of the mixed-lubrication regime have long been established, only small-scale numerical modeling was possible due to computing power limitations. This led to the appearance of averaging models, thus making it possible to generalize the trends observed in very small contacts, and to include them in large-scale numerical analyses. Unfortunately, a lack of experimental or numerical validations of these averaging models is observed, so that their reliability remains to be demonstrated. This paper proposes a deterministic numerical solution for the hydrodynamic component of the mixed-lubrication problem. The model is applicable to small partial journal bearings, having a few centimeters in width and diameter. Reynolds’ equation is solved on a very thin mesh, and pad deformation due to hydrodynamic pressure is taken into account. Deformation due to contact pressure is neglected, which limits the applicability of the model in those cases where extended contact is present. The results obtained with this deterministic model are compared to the stochastic solution proposed by Patir and Cheng, in both hydrodynamic and elastohydrodynamic regimes. The rough surfaces used in this study are numerically generated (Gaussian) and are either isotropic or oriented, having different correlation lengths. It is shown that the stochastic model of Patir and Cheng correctly anticipates the influence of roughness over the pressure field, for different types of roughness. However, when compared to the smooth surface solution, the correction introduced by this model only partially compensates for the differences observed with a deterministic analysis.

1.
Patir
,
N.
, and
Cheng
,
H. S.
, 1978, “
An Average Flow Model for Determining Effects of Three-dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
0022-2305,
100
, pp.
12
17
.
2.
Patir
,
N.
, and
Cheng
,
H. S.
, 1979, “
Application of the Average Flow Model to the Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
220
229
.
3.
Tanneau
,
G.
.,
Frêne
,
J.
, and
Berthe
,
D.
, 1985, “
Theoretical Approach to Roughness Effects in the Small-End Bearing of a Connecting Rod
,”
Proceedings of the 11th Leeds-Lyon Symposium on Tribology
,
Butterworths
, London, pp.
64
69
.
4.
Shi
,
F.
, and
Wang
,
J. Q.
, 1998, “
A Mixed-TEHD Model for Journal-Bearing Conformal Contacts—Part I: Model Formulation and Approximation of Heat Transfer Considering Asperity Contact
,”
ASME J. Tribol.
0742-4787,
120
, pp.
198
205
.
5.
Wang
,
J. Q.
,
Shi
,
F.
, and
Lee
,
S. C.
, 1998, “
A Mixed-TEHD Model for Journal-Bearing Conformal Contacts—Part II: Contact, Film Thickness, and Performance Analyses
,”
ASME J. Tribol.
0742-4787,
120
, pp.
206
213
.
6.
Wang
,
Y.
,
Zhang
,
C.
,
Wang
,
Q. J.
, and
Lin
,
C.
, 2002, “
A Mixed-TEHD Analysis and Experiment of Journal Bearings Under Severe Operating Conditions
,”
Tribol. Int.
0301-679X,
35
, pp.
395
407
.
7.
Wu
,
C.
, and
Zheng
,
L.
, 1989, “
An Average Reynolds Equation for Partial Film Lubrication with a Contact Factor
,”
ASME J. Tribol.
0742-4787,
111
, pp.
188
191
.
8.
Lo
,
S. W.
, 1994, “
A Study on Flow Phenomena in Mixed Lubrication Regime by Porous Media Models
,”
ASME J. Tribol.
0742-4787,
116
, pp.
640
647
.
9.
Ramesh
,
J.
,
Majumdar
,
B. C.
, and
Rao
,
N. S.
, 1997, “
Thermohydrodynamic Analysis of Submerged Oil Journal Bearings Considering Surface Roughness Effects
,”
ASME J. Tribol.
0742-4787,
119
, pp.
100
106
.
10.
Wilson
,
W. R. D.
, and
Marsault
,
N.
, 1998, “
Partial Hydrodynamic Lubrication With Large Fractional Contact Areas
,”
ASME J. Tribol.
0742-4787,
120
, pp.
16
20
.
11.
Epstein
,
D.
,
Yu
,
T.
,
Wang
,
J.
,
Keer
,
L. M.
,
Cheng
,
H. S.
, and
Liu
,
S.
, 2003, “
An Efficient Method of Analyzing the Effect of Roughness on Fatigue Life in Mixed-EHL Contact
,”
STLE Tribol. Trans.
1040-2004,
46
, pp.
273
281
.
12.
Liu
,
W. K.
,
Xiong
,
S.
,
Guo
,
Y.
,
Wang
,
Q. J.
,
Wang
,
Y.
,
Yang
,
A.
, and
Vaidyanathan
,
K.
, 2004, “
Finite Element Method for Mixed Elastohydrodynamic Lubrication of Journal-Bearing Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
60
, pp.
1759
1790
.
13.
Harp
,
S. R.
, and
Salant
,
R. F.
, 2001, “
An Average Flow Model of Rough Surface Lubrication With Inter-Asperity Cavitation
,”
ASME J. Tribol.
0742-4787,
134
, pp.
134
143
.
14.
Harp
,
S. R.
, and
Salant
,
R. F.
, 2002, “
Inter-Asperity Cavitation and Global Cavitation in Seals: An Average Flow Analysis
,”
Tribol. Int.
0301-679X,
35
, pp.
113
121
.
15.
Lubrecht
,
A. A.
,
Napel
,
W. E.
, and
Bosma
,
R.
, 1988, “
The Influence of Longitudinal and Transverse Roughness on the Elastohydrodynamic Lubrication of Circular Contacts
,”
ASME J. Tribol.
0742-4787,
110
, pp.
412
426
.
16.
Kweh
,
C. C.
,
Evans
,
H. P.
, and
Sindle
,
R. W.
, 1989, “
Micro-Elastohydrodynamic Lubrication of an Elliptical Contact With Transverse and Three-dimensional Roughness
,”
ASME J. Tribol.
0742-4787,
111
, pp.
577
584
.
17.
Kweh
,
C. C.
,
Parching
,
M. J.
,
Evans
,
H. P.
, and
Sindle
,
R. W.
, 1992, “
Simulation of Elastohydrodynamic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
114
, pp.
412
419
.
18.
Ai
,
X.
, and
Cheng
,
H. S.
, 1996, “
The Effects of Surface Texture on EHL Point Contacts
,”
ASME J. Tribol.
0742-4787,
118
, pp.
59
66
.
19.
Jiang
,
X.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X.
, and
Lee
,
S. C.
, 1999, “
A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact
,”
ASME J. Tribol.
0742-4787,
121
, pp.
481
491
.
20.
Hu
,
Y. Z.
, and
Zhu
,
D.
, 2000, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
0742-4787,
122
, pp.
1
9
.
21.
Hu
,
Y. Z.
,
Wang
,
H.
,
Wang
,
W. Z.
, and
Zhu
,
D.
, 2001, “
A Computer Model of Mixed Lubrication in Point Contacts
,”
Tribol. Int.
0301-679X,
34
, pp.
65
73
.
22.
Zhu
,
D.
, and
Hu
,
Y. Z.
, 2001, “
Effects of Rough Surface Topography and Orientation on the Characteristics of EHD and Mixed Lubrication in Both Circular and Elliptical Contacts
,”
STLE Tribol. Trans.
1040-2004,
44
, pp.
391
398
.
23.
Epstein
,
D.
,
Keer
,
L. M.
,
Wang
,
Q. J.
,
Cheng
,
H. S.
, and
Zhu
,
D.
, 2003, “
Effect of Surface Topography on Contact Fatigue in Mixed Lubrication
,”
STLE Tribol. Trans.
1040-2004,
46
, pp.
506
513
.
24.
Wang
,
Q. J.
,
Zhu
,
D.
,
Cheng
,
H. S.
,
Yu
,
T.
,
Jiang
,
X
, and
Liu
,
S.
, 2004, “
Mixed Lubrication Analyses by a Macro-Micro Approach and a Full Scale Mixed EHL Model
,”
ASME J. Tribol.
0742-4787,
126
, pp.
81
91
.
25.
Wang
,
Q. J.
, and
Zhu
,
D.
, 2005, “
Virtual Texturing: Modeling the Performance of Lubricated Contacts of Engineered Surfaces
,”
ASME J. Tribol.
0742-4787,
127
, pp.
722
728
.
26.
Wang
,
W. Z.
,
Chen
,
H.
,
Hu
,
Y. Z.
, and
Wang
,
H.
, 2006, “
Effect of Surface Roughness Parameters on Mixed Lubrication Characteristics
,”
Tribol. Int.
0301-679X,
39
, pp.
522
527
.
27.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
University Press
, Cambridge.
28.
Bouyer
,
J.
, and
Fillon
,
M.
, 2004, “
Relevance of the Thermoelastohydrodynamic Model in the Analysis of a Plain Journal Bearing Subjected to Severe Operating Conditions
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
218
, pp.
365
377
.
29.
Ren
,
N.
, and
Lee
,
S. C.
, 1993, “
Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method
,”
ASME J. Tribol.
0742-4787,
115
, pp.
597
601
.
30.
Love
,
A. E. H.
, 1929, “
The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary
,”
Philos. Trans. R. Soc. London
0962-8436,
228
, pp.
377
420
.
31.
Patir
,
N.
, 1978, “
A Numerical Procedure for Random Generation of Rough Surfaces
,”
Wear
0043-1648,
47
, pp.
263
277
.
You do not currently have access to this content.