A thermomechanical analysis of elasto-plastic bodies is a necessary step toward the understanding of tribological behaviors of machine components subjected to both mechanical loading and frictional heating. A three-dimensional thermoelastoplastic contact model for counterformal bodies has been developed, which takes into account steady state heat flux, temperature-dependent strain hardening behavior, and interaction of mechanical and thermal loads. The fast Fourier transform and conjugate gradient method are the underlying numerical algorithms used in this model. Sliding of a half-space over a stationary sphere is simulated with this model. The friction-induced heat is partitioned into two bodies based on surface temperature distributions. In the simulation, the sphere is considered to be fully thermoelastoplastic, while the half-space is treated to be thermoelastic. Simulation results include surface pressure, temperature rise, and subsurface stress and plastic strain fields. The paper also studies the influences of sliding speed and thermal softening on contact behaviors for sliding speed ranging three orders of magnitude.

1.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
London
.
2.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Oxford University Press
,
London
.
3.
Francis
,
H. A.
, 1970, “
Interfacial Temperature Distribution Within a Sliding Hertzian Contact
,”
ASLE Trans.
0569-8197,
14
, pp.
41
54
.
4.
Tian
,
X. F.
, and
Kennedy
,
F. E.
, 1994, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
116
, pp.
167
173
.
5.
Barber
,
J. R.
, 1984, “
Thermoelastic Displacements and Stresses Due to a Heat Source Moving Over the Surface of a Half Plane
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
636
640
.
6.
Huang
,
J. H.
, and
Ju
,
F. D.
, 1985, “
Thermomechanical Cracking Due to Moving Frictional Loads
,”
Wear
0043-1648,
102
, pp.
81
104
.
7.
Ju
,
F. D.
, and
Huang
,
J. H.
, 1982, “
Heat Checking in the Contact Zone of a Bearing Seal (a Two-Dimensional Model of a Single Moving Asperity)
,”
Wear
0043-1648,
79
, pp.
107
118
.
8.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1994, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
0742-4787,
116
, pp.
812
823
.
9.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1994, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
0742-4787,
116
, pp.
824
832
.
10.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1995, “
A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces
,”
ASME J. Tribol.
0742-4787,
117
, pp.
203
215
.
11.
Komvopoulos
,
K.
, 2008, “
Effects of Multi-Scale Roughness and Frictional Heating on Solid Body Contact Deformation
,”
C. R. Mec.
1631-0721,
336
, pp.
149
162
.
12.
Liu
,
S. B.
, and
Wang
,
Q.
, 2001, “
A Three-Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
123
, pp.
17
26
.
13.
Boucly
,
V.
,
Nelias
,
D.
,
Liu
,
S. B.
,
Wang
,
Q.
, and
Keer
,
L. M.
, 2005, “
Contact Analyses for Bodies With Frictional Heating and Plastic Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
355
364
.
14.
Blok
,
H.
, 1937, “
Theoretical Study of Temperature Rise at Surface of Actual Contact Under Oiliness Lubricating Conditions
,”
Proc. Inst. Mech. Eng.
0020-3483, Proceedings of General Discussion on Lubrication and Lubricants,
2
, pp.
222
235
.
15.
Bos
,
J.
, and
Moes
,
H.
, 1995, “
Frictional Heating of Tribological Contacts
,”
ASME J. Tribol.
0742-4787,
117
, pp.
171
177
.
16.
Clarke
,
A.
,
Sharif
,
K. J.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
, 2006, “
Heat Partition in Rolling/Sliding Elastohydrodynamic Contacts
,”
ASME J. Tribol.
0742-4787,
128
, pp.
67
78
.
17.
Kulkarni
,
S. M.
,
Rubin
,
C. A.
, and
Hahn
,
G. T.
, 1991, “
Elasto-Plastic Coupled Temperature-Displacement Finite Element Analysis of Two-Dimensional Rolling-Sliding Contact With a Translating Heat Source
,”
ASME J. Tribol.
0742-4787,
113
, pp.
93
101
.
18.
Gupta
,
V.
,
Bastias
,
P.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
, 1993, “
Elasto-Plastic Finite-Element Analysis of 2-D Rolling-Plus-Sliding Contact With Temperature-Dependent Bearing Steel Material Properties
,”
Wear
0043-1648,
169
, pp.
251
256
.
19.
Ye
,
N.
, and
Komvopoulos
,
K.
, 2003, “
Three-Dimensional Finite Element Analysis of Elastic-Plastic Layered Media Under Thermomechanical Surface Loading
,”
ASME J. Tribol.
0742-4787,
125
, pp.
52
59
.
20.
Gong
,
Z.-Q.
, and
Komvopoulos
,
K.
, 2004, “
Mechanical and Thermomechanical Elastic-Plastic Contact Analysis of Layered Media With Patterned Surfaces
,”
ASME J. Tribol.
0742-4787,
126
, pp.
9
17
.
21.
Wang
,
Q.
, and
Liu
,
G.
, 1999, “
A Thermoelastic Asperity Contact Model Considering Steady-State Heat Transfer
,”
Tribol. Trans.
1040-2004,
42
(
4
), pp.
763
770
.
22.
Liu
,
G.
,
Wang
,
Q.
, and
Liu
,
S. B.
, 2001, “
A Three-Dimensional Thermal-Mechanical Asperity Contact Model for Two Nominally Flat Surfaces in Contact
,”
ASME J. Tribol.
0742-4787,
123
, pp.
595
602
.
23.
Gong
,
Z.-Q.
, and
Komvopoulos
,
K.
, 2005, “
Thermomechanical Analysis of Semi-Infinite Solid in Sliding Contact With a Fractal Surface
,”
ASME J. Tribol.
0742-4787,
127
, pp.
331
342
.
24.
Liu
,
S. B.
,
Wang
,
Q.
, and
Harris
,
S. J.
, 2003, “
Surface Normal Thermoelastic Displacement in Moving Rough Surface Contacts
,”
ASME J. Tribol.
0742-4787,
125
, pp.
862
868
.
25.
Yu
,
H.
,
Liu
,
S. B.
,
Wang
,
Q.
, and
Chung
,
Y. W.
, 2004, “
Influence of Temperature-Dependent Yield Strength on Thermomechanical Asperity Contacts
,”
Tribol. Lett.
1023-8883,
17
(
2
), pp.
155
163
.
26.
Liu
,
S. B.
, and
Wang
,
Q.
, 2003, “
Transient Thermoelastic Stress Fields in a Half-Space
,”
ASME J. Tribol.
0742-4787,
125
, pp.
33
43
.
27.
Jacq
,
C.
,
Nelias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2002, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
0742-4787,
124
, pp.
653
667
.
28.
Nelias
,
D.
,
Antaluca
,
E.
,
Boucly
,
V.
, and
Cretu
,
S.
, 2007, “
A Three-Dimensional Semianalytical Model for Elastic-Plastic Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
129
, pp.
761
771
.
29.
Nelias
,
D.
,
Boucly
,
V.
, and
Brunet
,
M.
, 2006, “
Elastic-Plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-in Model
,”
ASME J. Tribol.
0742-4787,
128
, pp.
236
244
.
30.
Boucly
,
V.
,
Nelias
,
D.
, and
Green
,
I.
, 2007, “
Modeling of the Rolling and Sliding Contact Between Two Asperities
,”
ASME J. Tribol.
0742-4787,
129
, pp.
235
245
.
31.
Chen
,
W. W.
,
Liu
,
S. B.
, and
Wang
,
Q.
, 2008, “
FFT-Based Numerical Methods for Elasto-Plastic Contacts of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
011022
.
32.
Liu
,
S. B.
, and
Wang
,
Q.
, 2002, “
Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
0742-4787,
124
, pp.
36
45
.
33.
Chiu
,
Y. P.
, 1978, “
On the Stress Field and Surface Deformation in a Half Space With a Cuboidal Zone in Which Initial Strains Are Uniform
,”
ASME J. Appl. Mech.
0021-8936,
45
, pp.
302
306
.
34.
Seo
,
K.
, and
Mura
,
T.
, 1979, “
The Elastic Field in a Half Space Due to Ellipsoidal Inclusions With Uniform Dilatational Eigenstrains
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
568
572
.
35.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
0043-1648,
243
, pp.
101
111
.
36.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rate, and Temperatures
,”
Proceedings of the International Symposium
,
The Hague, The Netherlands
, pp.
541
547
.
37.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
, pp.
206
219
.
38.
Ju
,
Y.
, and
Farris
,
T. N.
, 1996, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
0742-4787,
118
, pp.
320
328
.
39.
Liu
,
S. B.
,
Hua
,
D.
,
Chen
,
W. W.
, and
Wang
,
Q.
, 2007, “
Tribological Modeling: Application of Fast Fourier Transform
,”
Tribol. Int.
0301-679X,
40
, pp.
1284
1293
.
40.
Chen
,
W. W.
,
Wang
,
Q.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
, 2008, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and Sliding
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
021021
.
41.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
0742-4787,
125
, pp.
499
506
.
You do not currently have access to this content.