A model is developed to investigate the effect of radial grooves and waffle-shape grooves on the performance of a wet clutch. Three-dimensional formulation of the governing equations, boundary conditions, and numerical solution scheme are presented for modeling the thermal aspects of the engagement process in a wet clutch. The thermal model includes full consideration of the viscous heat dissipation in the fluid as well as heat transfer into the separator, the friction material, and the core disk. The convective terms in the energy equations for the oil as well as the heat conduction equations in the bounding solids are properly formulated to determine the temperature fields corresponding to the domains between grooves. Roughness, centrifugal force, deformability, and permeability of the friction material with grooves are taken into account. The effects of groove geometry such as groove depth, grooved area, and number of grooves on the engagement characteristic of a wet clutch are investigated. It is also shown that the thermal effects in a wet clutch influence the engagement time and the torque response and should be included in the analytical studies.

1.
Payvar
,
P.
, 1991, “
Laminar Heat Transfer in the Oil Groove of a Wet Clutch
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
1791
1798
.
2.
Natsumeda
,
S.
, and
Miyoshi
,
T.
, 1994, “
Numerical Simulation of Engagement of Paper Based Wet Clutch Facing
,”
ASME J. Tribol.
0742-4787,
116
, pp.
232
237
.
3.
Berger
,
E. J.
,
Sadeghi
,
F.
, and
Krousgrill
,
C. M.
, 1996, “
Finite Element Modeling of Engagement of Rough and Grooved Wet Clutches
,”
ASME J. Tribol.
0742-4787,
118
, pp.
137
146
.
4.
Berger
,
E. J.
,
Sadeghi
,
F.
, and
Krousgrill
,
C. M.
, 1997, “
Analytical and Numerical Modeling of Engagement of Rough, Permeable, Grooved Wet Clutches
,”
ASME J. Tribol.
0742-4787,
119
, pp.
143
148
.
5.
Yang
,
Y.
,
Lam
,
R. C.
,
Chen
,
Y. F.
, and
Yabe
,
H.
, 1995, “
Modeling of Heat Transfer and Fluid Hydrodynamics for a Multidisk Wet Clutch
,” SAE Paper No. 950898.
6.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
, 1999, “
Thermal Characteristics of a Wet Clutch
,”
ASME J. Tribol.
0742-4787,
121
, pp.
610
617
.
7.
Razzaque
,
M. M.
, and
Kato
,
T.
, 1999, “
Effects of Groove Orientation on Hydrodynamic Behavior of Wet Clutch Coolant Films
,”
ASME J. Tribol.
0742-4787,
121
, pp.
808
815
.
8.
Razzaque
,
M. M.
, and
Kato
,
T.
, 1999, “
Effect of a Groove on the Behavior of a Squeeze Film Between a Grooved and a Plain Rotating Annular Disk
,”
ASME J. Tribol.
0742-4787,
121
,
56
61
.
9.
Gao
,
H.
, and
Barber
,
G.
, 2002, “
Engagement of a Rough, Lubricated and Grooved Disk Clutch With a Porous Deformable Paper-Based Friction Material
,”
Tribol. Trans.
1040-2004,
45
, pp.
464
470
.
10.
Zagrodzki
,
P.
, and
Truncone
,
S. A.
, 2003, “
Generation of Hot Spots in a Wet Multidisk Clutch During Short-Term Engagement
,”
Wear
0043-1648,
254
, pp.
474
491
.
11.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
, 2002, “
On the Formation of Hot Spots in Wet Clutch Systems
,”
ASME J. Tribol.
0742-4787,
124
, pp.
336
345
.
12.
Marklund
,
P.
, and
Larsson
,
R.
, 2007, “
Wet Clutch Under Limited Slip Conditions—Simplified Testing and Simulation
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
221
, pp.
545
551
.
13.
Marklund
,
P.
, and
Larsson
,
R.
, 2009, “
Modelling and Simulation of Thermal Effects in Wet Clutches Operating Under Boundary Lubrication Conditions
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
223
, pp.
1129
1141
.
14.
Dobrica
,
M. B.
, and
Fillon
,
M.
, 2009, “
About the Validity of Reynolds Equation and Inertia Effects in Textured Sliders of Infinite Width
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
223
, pp.
69
78
.
15.
Beavers
,
G. S.
, and
Joseph
,
D. D.
, 1967, “
Boundary Conditions at a Naturally Permeable Wall
,”
J. Fluid Mech.
0022-1120,
30
, pp.
197
207
.
16.
Patir
,
N.
, and
Cheng
,
H. S.
, 1978, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
0022-2305,
100
, pp.
12
17
.
17.
Patir
,
N.
, and
Cheng
,
H. S.
, 1979, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
220
230
.
18.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
0950-1207,
295
, pp.
300
319
.
19.
Xin
,
R. C.
, and
Tao
,
W. Q.
, 1994, “
Analytical Solution for Transient Heat Conduction in Two Semi-Infinite Bodies in Contact
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
224
227
.
20.
Khonsari
,
M. M.
, and
Booser
,
E. R.
, 2010, “
On the Stribeck Curve
,”
Recent Developments in Wear Prevention, Friction and Lubrication
,
G.
Nikas
, ed.,
Old City
,
Philadelphia, PA
, pp.
263
278
.
21.
Wise
,
W.
, and
Mitchell
,
J.
, 1972, “
Gylon Fluorocarbons: New High-Performance Friction Materials for High-Speed Heavy-Duty Wet Clutches
,” SAE Paper No. 720365.
You do not currently have access to this content.