A series of copper–Al2O3 composite materials (CACMs) with 0, 2, 4, and 6 wt.% of Al2O3 (average size about 80 nm) was fabricated by powder metallurgy method. The tribological behavior of CACMs was investigated by a ring-on-block sliding friction test. The results show that the hardness and the wear resistance of CACMs are improved by the addition of Al2O3. The CACMs with 0% Al2O3 (pure copper) shows the mechanism of adhesive wear and have very poor wear resistance. By comparing with the pure copper, the wear resistance of the CACMs with 2% and 6% Al2O3 is improved. When the proportion of Al2O3 is 4%, slightly abrasive wear occurs at the interface between two sliding surfaces, and the CACMs achieve higher wear resistance in comparison to that with 2% and 6% Al2O3.

References

1.
Kaczmar
,
J. W.
,
Pietrzak
,
K.
,
Wlosinski
,
W.
, and
Mater
,
J.
,
2000
, “
The Production and Application of Metal Matrix Composite Materials
,”
J. Mater. Process. Technol.
,
106
(
1–3
), pp.
58
67
.10.1016/S0924-0136(00)00639-7
2.
Li
,
L.
,
Wong
,
Y. S.
,
Fuh
,
J. Y. H.
,
Lu
,
L.
, and
Mater
,
J.
,
2001
, “
Effect of TiC in Copper-Tungsten Electrodes on EDM Performance
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
563
567
.10.1016/S0924-0136(01)00622-7
3.
Yan
,
P.
,
Lin
,
C. G.
,
Cui
,
S.
,
Zhou
,
Z. L.
,
Li
,
M.
,
Lu
,
Y. Y.
,
Li
,
Z. D.
, and
Lei
,
H.
,
2011
, “
Present Status in Research and Application on Dispersion Strengthened Copper by In-Situ Methods
,”
Mater. Rev.
,
25
(
6
), pp.
101
105
.
4.
Ji
,
K. J.
,
Xia
,
Y. Q.
, and
Dai
,
Z. D.
,
2013
, “
Different Foamed Metal-Reinforced Composites: Tribological Behavior and Temperature Field Simulation
,”
Tribol. Trans.
,
56
(
4
), pp.
615
622
.10.1080/10402004.2012.748235
5.
Zhou
,
G. H.
,
Ding
,
H. Y.
,
Zhang
,
Y.
,
David
,
H.
, and
Aihui
,
L.
,
2009
, “
Fretting Behavior of Nano-Al2O3 Reinforced Copper-Matrix Composites Prepared by Coprecipitation
,” Metalurgica,
15
(
3
), pp.
169
179
. Available: http://www.metalurgija.org.rs/mjom/vol15/No%203/4_Zhou_MJoM_1503.pdf
6.
Božić
,
D.
,
Cvijović-Alagić
,
I.
,
Dimčić
,
B.
,
Stašić
,
J.
, and
Rajković
,
V.
,
2009
, “
In-Situ Processing of TiB2 Nanoparticle-Reinforced Copper Matrix Composites
,”
Sci. Sinter.
,
41
(
2
), pp.
143
150
.10.2298/SOS0902143B
7.
Bijwe
,
J.
,
Rattan
,
R.
, and
Fahim
,
M.
,
2007
, “
Abrasive Wear Performance of Carbon Fabric Reinforced Polyetherimide Composites: Influence of Content and Orientation of Fabric
,”
Tribol. Int.
,
40
(
5
), pp.
844
854
.10.1016/j.triboint.2006.08.005
8.
Kumar
,
S.
, and
Balasubramanian
,
V.
,
2010
, “
Effect of Reinforcement Size and Volume Fraction on the Abrasive Wear Behaviour of AA7075 Al/SiCp P/M Composites—A Statistical Analysis
,”
Tribol. Int.
,
43
(
1–2
), pp.
414
422
.10.1016/j.triboint.2009.07.003
9.
Rahul
,
A.
,
Anita
,
M.
,
Sunil
,
M.
, and
Rakesh
,
K. G.
,
2014
, “
Synthesis and Characterization of Al/Al3Fe Nanocomposite for Tribological Applications
,”
ASME J. Tribol.
,
136
(
1
), pp.
1
9
.10.1115/1.4025601
10.
Jia
,
Z. N.
,
Chen
,
J. J.
, and
Fan
,
B. L.
,
2010
, “
Tribological Behaviors of PTFE-Based Composites Filled With Nanoscale Lamellar Structure Expanded Graphite
,”
ASME J. Tribol.
,
132
(
3
), pp.
1
7
.10.1115/1.4001546
11.
Korac
,
M.
,
Kamberovic
,
Z.
,
Tasic
,
M.
, and
Gavrillovski
,
M.
,
2008
, “
Nanocomposite Powders for New Contact Materials Based on Copper and Alumina
,”
Chem. Ind. Chem. Eng. Q.
,
14
(
4
), pp.
215
218
.10.2298/CICEQ0804215K
12.
Jena
,
P. K.
,
Brocchi
,
E. A.
, and
Motta
,
M. S.
,
2001
, “
In-Situ Formation of Cu-Al2O3 Nano-Scale Composites by Chemical Routes and Studies on Their Microstructures
,”
Mater. Sci. Eng. A
,
313
(
1–2
), pp.
180
186
.10.1016/S0921-5093(00)01998-5
13.
Lee
,
D. W.
, and
Kim
,
B. K.
,
2004
, “
Nanocomposite Powders for New Contact Materials Based on Copper and Alumina
,”
Mater. Lett.
,
58
(
3–4
), pp.
378
383
.10.1016/S0167-577X(03)00505-6
14.
Saravanan
,
S. D.
,
Senthilkumar
,
M.
, and
Shankar
,
S.
,
2013
, “
Effect of Particle Size on Tribological Behavior of Rice Husk Ash-Reinforced Aluminum Alloy (AlSi10Mg) Matrix Composites
,”
Tribol. Trans.
,
56
(
6
), pp.
1156
1167
.10.1080/10402004.2013.831962
15.
Dhanasekaran
,
S.
, and
Gnanamoorthy
,
R.
,
2007
, “
Abrasive Wear Behavior of Sintered Steels Prepared With MoS2 Addition
,”
Wear
,
262
(
5–6
), pp.
617
623
.10.1016/j.wear.2006.07.006
16.
Li
,
S.
,
Feng
,
Y.
, and
Ling
,
S.
,
2008
, “
Effect of Sintering Temperature on Properties of Cu-MoS2 Composite Materials
,”
Metall. Funct. Mater.
,
15
(
1
), pp.
24
31
.
17.
Tian
,
B.
,
Liua
,
P.
,
Songa
,
K.
,
Lia
,
Y.
,
Liua
,
Y.
,
Rena
,
F.
, and
Sua
,
J.
,
2006
, “
Microstructure and Properties at Elevated Temperature of a Nano-Al2O3 Particles Dispersion Strengthened Copper Base Composite
,”
Mater. Sci. Eng. A.
,
435–436
(
11
), pp.
705
710
.10.1016/j.msea.2006.07.129
You do not currently have access to this content.