Effects of grooving in a porous faced hydrostatic circular step thrust bearing are investigated using a mathematical model based on the narrow groove theory (NGT). It is shown that enhancement of load capacity by grooving the step is possible at moderate level of permeability of the porous facing. Load capacity drops sharply with the increase of porous facing thickness. However, this drop in load capacity occurs mostly within a small thickness of the porous facing. Considering the coupled effects of permeability and inertia, it is recommended that the dimensionless step location should be 0.5–0.8 and the dimensionless step height should be less than five to take advantage of grooving. The groove geometric parameters such as groove inclination angle, fraction of grooved area and groove depth corresponding to the maximum load capacity are found to be the same for both with and without porous facing. However, with porous facing, the sensitivity of the load capacity on the groove parameters reduces. At high level of permeability, the effects of grooves may become insignificant because of high seepage flow through the porous facing.

References

1.
Williams
,
J. A.
,
1996
,
Engineering Tribology
,
Oxford University
,
New York
, pp.
395
396
.
2.
Prakash
,
J.
, and
Vij
,
S. K.
,
1972
, “
Squeeze Films in Porous Metal Bearings
,”
ASME J. Lubr. Technol.
,
94
(
4
), pp.
302
305
.10.1115/1.3451717
3.
Prakash
,
J.
, and
Vij
,
S. K.
,
1974
, “
Squeeze Films in Porous Bearings
,”
Wear
,
27
(
3
), pp.
359
366
.10.1016/0043-1648(74)90120-3
4.
Ting
,
I. L.
,
1972
, “
A Mathematical Analog for Determination of Porous Annular Disk Squeeze Film Behavior Including the Fluid Inertia Effect
,”
ASME J. Basic Eng.
,
94
(
2
), pp.
417
421
.10.1115/1.3425437
5.
Wu
,
H.
,
1978
, “
A Review of Porous Squeeze Films
,”
Wear
,
47
(
2
), pp.
371
385
.10.1016/0043-1648(78)90166-7
6.
Sanni
,
S. A.
, and
Ayomidele
,
I. O.
,
1991
, “
Hydrodynamic Lubrication of a Porous Slider: Limitations of the Simplifying Assumption of a Small Porous Facing Thickness
,”
Wear
,
147
(
1
), pp.
1
7
.10.1016/0043-1648(91)90114-A
7.
Su
,
J. C. T.
, and
Lie
,
K. N.
,
2002
, “
Approximate Solution for a Hydrostatic Porous Journal Bearing With Low Eccentricity and Permeability
,” STLE J. Lubr. Eng.,
58
(
12
), pp.
22
28
. Available at: http://www.stle.org/assets/document/Approximate_Solution.pdf
8.
Quan
,
Y.-X.
, and
Wang
,
P.-M.
,
1985
, “
Theoretical Analysis and Experimental Investigation of a Porous Metal Bearing
,”
Tribol. Int.
,
18
(
2
), pp.
67
73
.10.1016/0301-679X(85)90029-5
9.
Yoshimoto
,
S.
, and
Kohno
,
K.
,
2001
, “
Static and Dynamic Characteristics of Aerostatic Circular Porous Thrust Bearings (Effect of the Shape of the Air Supply Area)
,”
ASME J. Tribol.
,
123
(
3
), pp.
501
508
.10.1115/1.1308027
10.
Kobayashi
,
T.
, and
Yabe
,
H.
,
2005
, “
Numerical Analysis of a Coupled Porous Journal and Thrust Bearing System
,”
ASME J. Tribol.
,
127
(
1
), pp.
120
129
.10.1115/1.1828454
11.
Cameron
,
A.
, and
Ettles
,
C. M. M.
,
1981
,
Basic Lubrication Theory
, 3rd ed.,
Ellis Horwood Ltd.
,
London
.
12.
Fuller
,
D. D.
,
1984
,
Theory and Practice of Lubrication for Engineers
, 2nd ed.,
Wiley
,
New York
.
13.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2001
,
Applied Tribology: Bearing Design and Lubrication
,
Wiley
,
New York
.
14.
Dowson
,
D.
,
1961
, “
Inertia Effects in Hydrostatic Thrust Bearings
,”
ASME J. Basic Eng.
,
83
(
2
), pp.
227
234
.10.1115/1.3658931
15.
Vohr
,
J. H.
, and
Chow
,
C. Y.
,
1965
, “
Characteristics of Herringbone-Grooved, Gas-Lubricated Journal Bearings
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
568
578
.10.1115/1.3650607
16.
Constantinescu
,
V. N.
, and
Galetuse
,
S.
,
1992
, “
On Extending the Narrow Spiral-Groove Theory to Configurations of Interest in Seals
,”
ASME J. Tribol.
,
114
(
3
), pp.
563
566
.10.1115/1.2920918
17.
Razzaque
,
M. M.
, and
Kato
,
T.
,
1999
, “
Effects of Groove Orientation on Hydrodynamic Behavior of Wet Clutch Coolant Films
,”
ASME J. Tribol.
,
121
(
1
), pp.
56
61
.10.1115/1.2833811
18.
Razzaque
,
M. M.
, and
Kato
,
T.
,
1999
, “
Effects of a Groove on the Behavior of a Squeeze Film Between a Grooved and a Plain Rotating Annular Disk
,”
ASME J. Tribol.
,
121
(
4
), pp.
808
815
.10.1115/1.2834139
19.
Zhu
,
Q.
, and
Zhang
,
W. J.
,
2000
, “
A Numerical Procedure Based on Boundary Element Method Analysis of the Archimedean Spiral Grooved Thrust Oil Bearing
,”
ASME J. Tribol.
,
122
(
3
), pp.
565
572
.10.1115/1.555402
20.
Razzaque
,
M. M.
, and
Hossain
,
M. Z.
,
2005
, “
Effects of Grooving in a Circular Step Thrust Bearing
,” ASME World Tribology Congress III, Sept. 12–16, Washington, DC.,
ASME
Paper No. WTC2005-63431, pp.
79
80
.10.1115/WTC2005-63431
21.
Hossain
,
M. Z.
, and
Razzaque
,
M. M.
,
2014
, “
Load Capacity of a Grooved Circular Step Thrust Bearing
,”
ASME J. Tribol.
,
136
(
1
), p.
011705
.10.1115/1.4025549
22.
Hsing
,
F. C.
,
1972
, “
Formulation of a Generalized Narrow Groove Theory for Spiral Grooved Viscous Pumps
,”
ASME J. Lubr. Technol.
,
94
(
1
), pp.
81
85
.10.1115/1.3451640
23.
Razzaque
,
M. M.
, and
Kato
,
T.
,
2001
, “
Squeezing of a Porous Faced Rotating Annular Disk Over a Grooved Annular Disk
,”
STLE Tribol. Trans.
,
44
(
1
), pp.
97
103
.10.1080/10402000108982431
You do not currently have access to this content.