Recently, ionic liquids (ILs) have received an increasing attention as lubricants owing to their intriguing properties such as tunable viscosity, high thermal stability, low emissions, nonflammability, and corrosion resistance. In this work, we investigate how the incorporation of octadecyltrichlorosilane (OTS) functionalized silica nanoparticles (NPs) in 1-butyl-3-methylimidazolium (trifluoromethysulfony)imide influences the tribological properties and rheological properties of IL under boundary lubrication and elastohydrodynamic conditions, respectively. It was found that the coefficient of friction was depended on the concentration of NPs in IL with a concave upward functional trend with a minimum at 0.05 wt.% for bare silica NPs and at 0.10 wt.% for OTS-functionalized silica NPs. For steel–steel sliding contact, the presence of functionalized NPs in IL at the optimum concentration decreased the coefficient of friction by 37% compared to IL and 17% compared to IL with bare silica NPs. While IL with bare NPs demonstrated a shear thinning behavior for all concentrations, IL with functionalized NPs showed a Newtonian behavior at low concentrations and shear thinning behavior at high concentrations. Overall, this study provides new insights into the antifriction and antiwear additives for lubrication systems involving ILs.

References

1.
Huang
,
H.
,
Hu
,
H.
,
Qiao
,
S.
,
Bai
,
L.
,
Han
,
M.
,
Liu
,
Y.
, and
Kang
,
Z.
,
2015
, “
Carbon Quantum Dot/CuSx Nanocomposites Towards Highly Efficient Lubrication and Metal Wear Repair
,”
Nanoscale
,
7
(
26
), pp.
11321
11327
.
2.
Spikes
,
H.
,
2015
, “
Friction Modifier Additives
,”
Tribol. Lett.
,
60
(
1
), pp.
1
26
.
3.
Meng
,
Y.
,
Su
,
F.
, and
Chen
,
Y.
,
2015
, “
Synthesis of Nano-Cu/Graphene Oxide Composites by Supercritical CO2-Assisted Deposition as a Novel Material for Reducing Friction and Wear
,”
Chem. Eng. J.
,
281
, pp.
11
19
.
4.
Mu
,
L.
,
Zhu
,
J.
,
Fan
,
J.
,
Zhou
,
Z.
,
Shi
,
Y.
,
Feng
,
X.
,
Wang
,
H.
, and
Lu
,
X.
,
2015
, “
Self-Lubricating Polytetrafluoroethylene/Polyimide Blends Reinforced With Zinc Oxide Nanoparticles
,”
J. Nanomater.
,
2015
, p.
545307
.
5.
Zhang
,
Z. J.
,
Simionesie
,
D.
, and
Schaschke
,
C.
,
2014
, “
Graphite and Hybrid Nanomaterials as Lubricant Additives
,”
Lubricants
,
2
(
2
), pp.
44
65
.
6.
Ahmed
,
N. S.
, and
Nassar
,
A. M.
,
2011
,
Lubricating Oil Additives
,
INTECH Open Access Publisher
,
Rijeka, Croatia
.
7.
Yadgarov
,
L.
,
Petrone
,
V.
,
Rosentsveig
,
R.
,
Feldman
,
Y.
,
Tenne
,
R.
, and
Senatore
,
A.
,
2013
, “
Tribological Studies of Rhenium Doped Fullerene-Like MoS2 Nanoparticles in Boundary, Mixed and Elasto-Hydrodynamic Lubrication Conditions
,”
Wear
,
297
(
1–2
), pp.
1103
1110
.
8.
Adhvaryu
,
A.
, and
Erhan
,
S. Z.
,
2002
, “
Epoxidized Soybean Oil as a Potential Source of High-Temperature Lubricants
,”
Ind. Crops Prod.
,
15
(
3
), pp.
247
254
.
9.
Martins
,
R.
,
Seabra
,
J.
,
Brito
,
A.
,
Seyfert
,
C.
,
Luther
,
R.
, and
Igartua
,
A.
,
2006
, “
Friction Coefficient in FZG Gears Lubricated With Industrial Gear Oils: Biodegradable Ester vs. Mineral Oil
,”
Tribol. Int.
,
39
(
6
), pp.
512
521
.
10.
Gusain
,
R.
, and
Khatri
,
O. P.
,
2016
, “
Fatty Acid Ionic Liquids as Environmentally Friendly Lubricants for Low Friction and Wear
,”
RSC Adv.
,
6
(
5
), pp.
3462
3469
.
11.
Lathi
,
P. S.
, and
Mattiasson
,
B.
,
2007
, “
Green Approach for the Preparation of Biodegradable Lubricant Base Stock From Epoxidized Vegetable Oil
,”
Appl. Catal., B
,
69
(
3–4
), pp.
207
212
.
12.
Boyde
,
S.
,
2002
, “
Green Lubricants: Environmental Benefits and Impacts of Lubrication
,”
Green Chem.
,
4
(
4
), pp.
293
307
.
13.
Luna
,
F. M. T.
,
Rocha
,
B. S.
,
Rola
,
E. M.
,
Albuquerque
,
M. C. G.
,
Azevedo
,
D. C. S.
, and
Cavalcante
,
C. L.
,
2011
, “
Assessment of Biodegradability and Oxidation Stability of Mineral, Vegetable and Synthetic Oil Samples
,”
Ind. Crops Prod.
,
33
(
3
), pp.
579
583
.
14.
Norrby
,
T.
,
2003
, “
Environmentally Adapted Lubricants—Where Are the Opportunities?
,”
Ind. Lubr. Tribol.
,
55
(
6
), pp.
268
274
.
15.
Kheireddin
,
B. A.
,
Lu
,
W.
,
Chen
,
I.
, and
Akbulut
,
M.
,
2013
, “
Inorganic Nanoparticle-Based Ionic Liquid Lubricants
,”
Wear
,
303
(
1
), pp.
185
190
.
16.
Plechkova
,
N. V.
, and
Seddon
,
K. R.
,
2008
, “
Applications of Ionic Liquids in the Chemical Industry
,”
Chem. Soc. Rev.
,
37
(
1
), pp.
123
150
.
17.
Castner
,
E. W.
,
Margulis
,
C. J.
,
Maroncelli
,
M.
, and
Wishart
,
J. F.
,
2011
, “
Ionic Liquids: Structure and Photochemical Reactions
,”
Annu. Rev. Phys. Chem.
,
62
(
1
), pp.
85
105
.
18.
Song
,
Z.
,
Yu
,
Q.
,
Cai
,
M.
,
Huang
,
G.
,
Yao
,
M.
,
Li
,
D.
,
Liang
,
Y.
,
Fan
,
M.
, and
Zhou
,
F.
,
2015
, “
Green Ionic Liquid Lubricants Prepared From Anti-Inflammatory Drug
,”
Tribol. Lett.
,
60
(
3
), p.
38
.
19.
Payne
,
S. M.
, and
Kerton
,
F. M.
,
2010
, “
Solubility of Bio-Sourced Feedstocks in ‘Green’ Solvents
,”
Green Chem.
,
12
(
9
), pp.
1648
1653
.
20.
Kulacki
,
K. J.
, and
Lamberti
,
G. A.
,
2008
, “
Toxicity of Imidazolium Ionic Liquids to Freshwater Algae
,”
Green Chem.
,
10
(
1
), pp.
104
110
.
21.
Sheldon
,
R. A.
,
2005
, “
Green Solvents for Sustainable Organic Synthesis: State of the Art
,”
Green Chem.
,
7
(
5
), pp.
267
278
.
22.
Arora
,
H.
, and
Cann
,
P. M.
,
2010
, “
Lubricant Film Formation Properties of Alkyl Imidazolium Tetrafluoroborate and Hexafluorophosphate Ionic Liquids
,”
Tribol. Int.
,
43
(10), pp.
1908
1916
.
23.
Yao
,
M.
,
Fan
,
M.
,
Liang
,
Y.
,
Zhou
,
F.
, and
Xia
,
Y.
,
2010
, “
Imidazolium Hexafluorophosphate Ionic Liquids as High Temperature Lubricants for Steel-Steel Contacts
,”
Wear
,
268
(
1
), pp.
67
71
.
24.
Otero
,
I.
,
López
,
E. R.
,
Reichelt
,
M.
,
Villanueva
,
M.
,
Salgado
,
J.
, and
Fernández
,
J.
,
2014
, “
Ionic Liquids Based on Phosphonium Cations as Neat Lubricants or Lubricant Additives for a Steel/Steel Contact
,”
ACS Appl. Mater. Interfaces
,
6
(
15
), pp.
13115
13128
.
25.
Pejaković
,
V.
,
Tomastik
,
C.
,
Dörr
,
N.
, and
Kalin
,
M.
,
2016
, “
Influence of Concentration and Anion Alkyl Chain Length on Tribological Properties of Imidazolium Sulfate Ionic Liquids as Additives to Glycerol in Steel–Steel Contact Lubrication
,”
Tribol. Int.
,
97
, pp.
234
243
.
26.
Li
,
H.
,
Somers
,
A. E.
,
Howlett
,
P. C.
,
Rutland
,
M. W.
,
Forsyth
,
M.
, and
Atkin
,
R.
,
2016
, “
Addition of Low Concentrations of an Ionic Liquid to a Base Oil Reduces Friction Over Multiple Length Scales: A Combined Nano-and Macrotribology Investigation
,”
Phys. Chem. Chem. Phys.
,
18
(
9
), pp.
6541
6547
.
27.
Song
,
Z.
,
Liang
,
Y.
,
Fan
,
M.
,
Zhou
,
F.
, and
Liu
,
W.
,
2014
, “
Ionic Liquids From Amino Acids: Fully Green Fluid Lubricants for Various Surface Contacts
,”
RSC Adv.
,
4
(
37
), pp.
19396
19402
.
28.
Cai
,
Z.
,
Meyer
,
H. M.
,
Ma
,
C.
,
Chi
,
M.
,
Luo
,
H.
, and
Qu
,
J.
,
2014
, “
Comparison of the Tribological Behavior of Steel–Steel and Si3N4–Steel Contacts in Lubricants With ZDDP or Ionic Liquid
,”
Wear
,
319
(
1
), pp.
172
183
.
29.
Wu
,
J.
,
Zhu
,
J.
,
Mu
,
L.
,
Shi
,
Y.
,
Dong
,
Y.
,
Feng
,
X.
, and
Lu
,
X.
,
2016
, “
High Load Capacity With Ionic Liquid-Lubricated Tribological System
,”
Tribol. Int.
,
94
, pp.
315
322
.
30.
Tiago
,
G.
,
Restolho
,
J.
,
Forte
,
A.
,
Colaço
,
R.
,
Branco
,
L. C.
, and
Saramago
,
B.
,
2015
, “
Novel Ionic Liquids for Interfacial and Tribological Applications
,”
Colloids Surf., A
,
472
, pp.
1
8
.
31.
Watanabe
,
S.
,
Nakano
,
M.
,
Miyake
,
K.
,
Tsuboi
,
R.
, and
Sasaki
,
S.
,
2014
, “
Effect of Molecular Orientation Angle of Imidazolium Ring on Frictional Properties of Imidazolium-Based Ionic Liquid
,”
Langmuir
,
30
(
27
), pp.
8078
8084
.
32.
Han
,
Y.
,
Qiao
,
D.
,
Zhang
,
L.
, and
Feng
,
D.
,
2015
, “
Study of Tribological Performance and Mechanism of Phosphonate Ionic Liquids for Steel/Aluminum Contact
,”
Tribol. Int.
,
84
, pp.
71
80
.
33.
Espinosa
,
T.
,
Sanes
,
J.
,
Jiménez
,
A. E.
, and
Bermúdez
,
M. D.
,
2013
, “
Surface Interactions, Corrosion Processes and Lubricating Performance of Protic and Aprotic Ionic Liquids With OFHC Copper
,”
Appl. Surf. Sci.
,
273
, pp.
578
597
.
34.
Arcifa
,
A.
,
Rossi
,
A.
,
Espinosa-Marzal
,
R. M.
, and
Spencer
,
N. D.
,
2016
, “
Influence of Environmental Humidity on the Wear and Friction of a Silica/Silicon Tribopair Lubricated With a Hydrophilic Ionic Liquid
,”
ACS Appl. Mater. Interfaces
,
8
(
5
), pp.
2961
2973
.
35.
Werzer
,
O.
,
Cranston
,
E. D.
,
Warr
,
G. G.
,
Atkin
,
R.
, and
Rutland
,
M. W.
,
2012
, “
Ionic Liquid Nanotribology: Mica–Silica Interactions in Ethylammonium Nitrate
,”
Phys. Chem. Chem. Phys.
,
14
(
15
), pp.
5147
5152
.
36.
Espinosa
,
T.
,
Jiménez
,
M.
,
Sanes
,
J.
,
Jiménez
,
A.-E.
,
Iglesias
,
M.
, and
Bermúdez
,
M.-D.
,
2014
, “
Ultra-Low Friction With a Protic Ionic Liquid Boundary Film at the Water-Lubricated Sapphire–Stainless Steel Interface
,”
Tribol. Lett.
,
53
(
1
), pp.
1
9
.
37.
Wang
,
H.
,
Qiao
,
D.
,
Zhang
,
S.
,
Feng
,
D.
, and
Lu
,
J.
,
2014
, “
Tribological Performance and Lubrication Mechanism of Alkylimidazolium Dialkyl Phosphates Ionic Liquids as Lubricants for Si3N4-Ti3SiC2 Contacts
,”
J. Nanomater.
,
2014
, p.
548658
.
38.
Somers
,
A. E.
,
Khemchandani
,
B.
,
Howlett
,
P. C.
,
Sun
,
J.
,
MacFarlane
,
D. R.
, and
Forsyth
,
M.
,
2013
, “
Ionic Liquids as Antiwear Additives in Base Oils: Influence of Structure on Miscibility and Antiwear Performance for Steel on Aluminum
,”
ACS Appl. Mater. Interfaces
,
5
(
22
), pp.
11544
11553
.
39.
Gusain
,
R.
,
Kokufu
,
S.
,
Bakshi
,
P. S.
,
Utsunomiya
,
T.
,
Ichii
,
T.
,
Sugimura
,
H.
, and
Khatri
,
O. P.
,
2016
, “
Self-Assembled Thin Film of Imidazolium Ionic Liquid on a Silicon Surface: Low Friction and Remarkable Wear-Resistivity
,”
Appl. Surf. Sci.
,
364
, pp.
878
885
.
40.
Totolin
,
V.
,
Minami
,
I.
,
Gabler
,
C.
,
Brenner
,
J.
, and
Dörr
,
N.
,
2014
, “
Lubrication Mechanism of Phosphonium Phosphate Ionic Liquid Additive in Alkylborane–Imidazole Complexes
,”
Tribol. Lett.
,
53
(
2
), pp.
421
432
.
41.
Yu
,
B.
,
Bansal
,
D. G.
,
Qu
,
J.
,
Sun
,
X.
,
Luo
,
H.
,
Dai
,
S.
,
Blau
,
P. J.
,
Bunting
,
B. G.
,
Mordukhovich
,
G.
, and
Smolenski
,
D. J.
,
2012
, “
Oil-Miscible and Non-Corrosive Phosphonium-Based Ionic Liquids as Candidate Lubricant Additives
,”
Wear
,
289
, pp.
58
64
.
42.
Qu
,
J.
,
Barnhill
,
W. C.
,
Luo
,
H.
,
Meyer
,
H. M.
,
Leonard
,
D. N.
,
Landauer
,
A. K.
,
Kheireddin
,
B.
,
Gao
,
H.
,
Papke
,
B. L.
, and
Dai
,
S.
,
2015
, “
Synergistic Effects Between Phosphonium‐Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives
,”
Adv. Mater.
,
27
(
32
), pp.
4767
4774
.
43.
Shi
,
Y.
,
Mu
,
L.
,
Feng
,
X.
, and
Lu
,
X.
,
2013
, “
Friction and Wear Behavior of CF/PTFE Composites Lubricated by Choline Chloride Ionic Liquids
,”
Tribol. Lett.
,
49
(
2
), pp.
413
420
.
44.
Mu
,
L.
,
Shi
,
Y.
,
Ji
,
T.
,
Chen
,
L.
,
Yuan
,
R.
,
Wang
,
H.
, and
Zhu
,
J.
,
2016
, “
Ionic Grease Lubricants: Protic [Triethanolamine][Oleic Acid] and Aprotic [Choline][Oleic Acid]
,”
ACS Appl. Mater. Interfaces
,
8
(
7
), pp.
4977
4984
.
45.
Mahrova
,
M.
,
Pagano
,
F.
,
Pejakovic
,
V.
,
Valea
,
A.
,
Kalin
,
M.
,
Igartua
,
A.
, and
Tojo
,
E.
,
2015
, “
Pyridinium Based Dicationic Ionic Liquids as Base Lubricants or Lubricant Additives
,”
Tribol. Int.
,
82
(
Part A
), pp.
245
254
.
46.
Taher
,
M.
,
Shah
,
F. U.
,
Filippov
,
A.
,
de Baets
,
P.
,
Glavatskih
,
S.
, and
Antzutkin
,
O. N.
,
2014
, “
Halogen-Free Pyrrolidinium Bis (Mandelato) Borate Ionic Liquids: Some Physicochemical Properties and Lubrication Performance as Additives to Polyethylene Glycol
,”
RSC Adv.
,
4
(
58
), pp.
30617
30623
.
47.
Yu
,
B.
,
Liu
,
Z.
,
Zhou
,
F.
,
Liu
,
W.
, and
Liang
,
Y.
,
2008
, “
A Novel Lubricant Additive Based on Carbon Nanotubes for Ionic Liquids
,”
Mater. Lett.
,
62
(
17–18
), pp.
2967
2969
.
48.
Sanes
,
J.
,
Carrión
,
F. J.
, and
Bermúdez
,
M. D.
,
2010
, “
Effect of the Addition of Room Temperature Ionic Liquid and ZnO Nanoparticles on the Wear and Scratch Resistance of Epoxy Resin
,”
Wear
,
268
(
11
), pp.
1295
1302
.
49.
Yu
,
B.
,
Liu
,
Z.
,
Ma
,
C.
,
Sun
,
J.
,
Liu
,
W.
, and
Zhou
,
F.
,
2015
, “
Ionic Liquid Modified Multi-Walled Carbon Nanotubes as Lubricant Additive
,”
Tribol. Int.
,
81
, pp.
38
42
.
50.
Pu
,
J.
,
Wan
,
S.
,
Zhao
,
W.
,
Mo
,
Y.
,
Zhang
,
X.
,
Wang
,
L.
, and
Xue
,
Q.
,
2011
, “
Preparation and Tribological Study of Functionalized Graphene–IL Nanocomposite Ultrathin Lubrication Films on Si Substrates
,”
J. Phys. Chem. C
,
115
(
27
), pp.
13275
13284
.
51.
Khare
,
V.
,
Pham
,
M.-Q.
,
Kumari
,
N.
,
Yoon
,
H.-S.
,
Kim
,
C.-S.
,
Park
,
J.-I.
, and
Ahn
,
S.-H.
,
2013
, “
Graphene–Ionic Liquid Based Hybrid Nanomaterials as Novel Lubricant for Low Friction and Wear
,”
ACS Appl. Mater. Interfaces
,
5
(
10
), pp.
4063
4075
.
52.
Fan
,
X.
,
Wang
,
L.
, and
Li
,
W.
,
2015
, “
In Situ Fabrication of Low-Friction Sandwich Sheets Through Functionalized Graphene Crosslinked by Ionic Liquids
,”
Tribol. Lett.
,
58
(
1
).
53.
Fan
,
X.
, and
Wang
,
L.
,
2015
, “
Ionic Liquids Gels With In Situ Modified Multiwall Carbon Nanotubes Towards High-Performance Lubricants
,”
Tribol. Int.
,
88
, pp.
179
188
.
54.
Fan
,
X.
, and
Wang
,
L.
,
2014
, “
Highly Conductive Ionic Liquids Toward High-Performance Space-Lubricating Greases
,”
ACS Appl. Mater. Interfaces
,
6
(
16
), pp.
14660
14671
.
55.
Fan
,
X.
,
Xia
,
Y.
,
Wang
,
L.
,
Pu
,
J.
,
Chen
,
T.
, and
Zhang
,
H.
,
2014
, “
Study of the Conductivity and Tribological Performance of Ionic Liquid and Lithium Greases
,”
Tribol. Lett.
,
53
(
1
), pp.
281
291
.
56.
Carrión
,
F. J.
,
Sanes
,
J.
,
Bermúdez
,
M.-D.
, and
Arribas
,
A.
,
2011
, “
New Single-Walled Carbon Nanotubes–Ionic Liquid Lubricant. Application to Polycarbonate–Stainless Steel Sliding Contact
,”
Tribol. Lett.
,
41
(
1
), pp.
199
207
.
57.
Gusain
,
R.
, and
Khatri
,
O. P.
,
2013
, “
Ultrasound Assisted Shape Regulation of CuO Nanorods in Ionic Liquids and Their Use as Energy Efficient Lubricant Additives
,”
J. Mater. Chem. A
,
1
(
18
), pp.
5612
5619
.
58.
Peng
,
D.-X.
,
Chen
,
C.-H.
,
Kang
,
Y.
,
Chang
,
Y.-P.
, and
Chang
,
S.-Y.
,
2010
, “
Size Effects of SiO2 Nanoparticles as Oil Additives on Tribology of Lubricant
,”
Ind. Lubr. Tribol.
,
62
(
2
), pp.
111
120
.
59.
Xie
,
H. M.
,
Jiang
,
B.
,
He
,
J. J.
,
Xia
,
X. S.
,
Jiang
,
Z. T.
,
Dai
,
J. H.
, and
Pan
,
F. S.
,
2015
, “
Effect of SiO2 Nanoparticles as Lubricating Oil Additives on the Cold-Rolling of AZ31 Magnesium Alloy Sheet
,”
Mater. Res. Innovations
,
19
(
S4
), pp.
127
132
.
60.
Liu
,
G.
,
Cai
,
M.
,
Zhou
,
F.
, and
Liu
,
W.
,
2014
, “
Charged Polymer Brushes-Grafted Hollow Silica Nanoparticles as a Novel Promising Material for Simultaneous Joint Lubrication and Treatment
,”
J. Phys. Chem. B
,
118
(
18
), pp.
4920
4931
.
61.
Rahman
,
I. A.
,
Vejayakumaran
,
P.
,
Sipaut
,
C. S.
,
Ismail
,
J.
,
Abu Bakar
,
M.
,
Adnan
,
R.
, and
Chee
,
C. K.
,
2007
, “
An Optimized Sol–Gel Synthesis of Stable Primary Equivalent Silica Particles
,”
Colloids Surf., A
,
294
(
1–3
), pp.
102
110
.
62.
Marini
,
M.
,
Pourabbas
,
B.
,
Pilati
,
F.
, and
Fabbri
,
P.
,
2008
, “
Functionally Modified Core-Shell Silica Nanoparticles by One-Pot Synthesis
,”
Colloids Surf., A
,
317
(
1–3
), pp.
473
481
.
63.
Bourlinos
,
A. B.
,
Herrera
,
R.
,
Chalkias
,
N.
,
Jiang
,
D. D.
,
Zhang
,
Q.
,
Archer
,
L. A.
, and
Giannelis
,
E. P.
,
2005
, “
Surface-Functionalized Nanoparticles With Liquid-Like Behavior
,”
Adv. Mater.
,
17
(
2
), pp.
234
237
.
64.
Akbulut
,
M.
,
Belman
,
N.
,
Golan
,
Y.
, and
Israelachvili
,
J.
,
2006
, “
Frictional Properties of Confined Nanorods
,”
Adv. Mater.
,
18
(
19
), pp.
2589
2592
.
65.
Chen
,
Y. L.
,
Xu
,
Z.
, and
Israelachvili
,
J.
,
1992
, “
Structure and Interactions of Surfactant-Covered Surfaces in Nonaqueous (Oil-Surfactant-Water) Media
,”
Langmuir
,
8
(
12
), pp.
2966
2975
.
66.
Padgurskas
,
J.
,
Rukuiza
,
R.
,
Prosyčevas
,
I.
, and
Kreivaitis
,
R.
,
2013
, “
Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles
,”
Tribol. Int.
,
60
, pp.
224
232
.
67.
Akbulut
,
M.
,
2012
, “
Nanoparticle-Based Lubrication Systems
,”
J. Powder Metall. Min.
,
1
, p.
e101
.
68.
Moshkovith
,
A.
,
Perfiliev
,
V.
,
Lapsker
,
I.
,
Fleischer
,
N.
,
Tenne
,
R.
, and
Rapoport
,
L.
,
2006
, “
Friction of Fullerene-Like WS2 Nanoparticles: Effect of Agglomeration
,”
Tribol. Lett.
,
24
(
3
), pp.
225
228
.
69.
Rapoport
,
L.
,
Fleischer
,
N.
, and
Tenne
,
R.
,
2003
, “
Fullerene-Like WS2 Nanoparticles: Superior Lubricants for Harsh Conditions
,”
Adv. Mater.
,
15
(
78
), pp.
651
655
.
70.
Bartz
,
W. J.
,
1971
, “
Solid Lubricant Additives—Effect of Concentration and Other Additives on Anti-Wear Performance
,”
Wear
,
17
(
5–6
), pp.
421
432
.
71.
Verma
,
A.
,
Jiang
,
W.
,
Abu Safe
,
H. H.
,
Brown
,
W. D.
, and
Malshe
,
A. P.
,
2008
, “
Tribological Behavior of Deagglomerated Active Inorganic Nanoparticles for Advanced Lubrication
,”
Tribol. Trans.
,
51
(
5
), pp.
673
678
.
72.
Gulzar
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Varman
,
M.
,
Zulkifli
,
N. W. M.
,
Mufti
,
R. A.
, and
Zahid
,
R.
,
2016
, “
Tribological Performance of Nanoparticles as Lubricating Oil Additives
,”
J. Nanopart. Res.
,
18
(
8
), p.
223
.
73.
Song
,
X.
,
Zheng
,
S.
,
Zhang
,
J.
,
Li
,
W.
,
Chen
,
Q.
, and
Cao
,
B.
,
2012
, “
Synthesis of Monodispersed ZnAl2O4 Nanoparticles and Their Tribology Properties as Lubricant Additives
,”
Mater. Res. Bull.
,
47
(
12
), pp.
4305
4310
.
74.
Yang
,
Y.
,
Singh
,
J.
, and
Ruths
,
M.
,
2014
, “
Friction of Aromatic Thiol Monolayers on Silver: SFA and AFM Studies of Adhesive and Non-Adhesive Contacts
,”
RSC Adv.
,
4
(
36
), pp.
18801
18810
.
75.
Ueno
,
K.
,
Inaba
,
A.
,
Kondoh
,
M.
, and
Watanabe
,
M.
,
2008
, “
Colloidal Stability of Bare and Polymer-Grafted Silica Nanoparticles in Ionic Liquids
,”
Langmuir
,
24
(
10
), pp.
5253
5259
.
You do not currently have access to this content.