In this study, a new approach has been developed to simulate three-dimensional (3D) experimental rolling contact fatigue (RCF) spalls using a two-dimensional (2D) finite element (FE) model. The model introduces a novel concept of dividing the 3D Hertzian pressure profile into 2D sections and utilizing them in a 2D continuum damage mechanics (CDM) RCF model. The distance between the two sections was determined by the size of the grains in the material microstructure. The 2D RCF model simulates characteristics of case carburized steels by incorporating hardness gradient and residual stress (RS) distribution with depth. The model also accounts for the topological randomness in the material microstructure using Voronoi tessellation. In order to define the failure criterion for the current model, sub-surface stress analysis was conducted for the Hertzian elliptical contact. It was predicted that the high shear stress region near the end of the major axis of the contact is the cause of catastrophic damage and spall formation. This prediction was validated by analyzing the spalls observed during RCF experiments using a surface profilometer. The model was implemented to predict RCF lives for 33 random material domains for different contact geometry and maximum Hertzian pressures. The model results were then compared to the RCF experiments conducted on two different test rigs, a three-ball-on-rod and a thrust bearing test apparatus (TBTA). It was found that the RCF lives obtained from the model are in good agreement with the experimental results. The results also demonstrated that the spalls generated using the analytical results resemble the spalls observed in experiments.

References

1.
Littmann
,
W. E.
,
1970
, “
The Mechanism of Contact Fatigue
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA SP-237
2.
Littmann
,
W. E.
, and
Widner
,
R. L.
,
1966
, “
Propagation of Contact Fatigue From Surface and Subsurface Origins
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
624
635
.
3.
Johnson
,
K. L.
,
1989
, “
The Strength of Surfaces in Rolling Contact
,”
Proc. Inst. Mech. Eng., Part C
,
203
(
3
), pp.
151
163
.
4.
Harris
,
T.
, and
Barnsby
,
R.
,
2001
, “
Life Ratings for Ball and Roller Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
215
(
6
), pp.
577
595
.
5.
Tallian
,
T. E.
,
1992
, “
The Failure Atlas for Hertz Contact Machine Elements
,”
Mech. Eng.
,
114
(
3
), p.
66
.
6.
Lundberg
,
G.
, and
Palmgren
,
A.
, 1947, “
Dynamic Capacity of Rolling Bearings
,”
Acra Polytech. Mech. Eng. Ser.
,
1
(
3
), p.
7
.
7.
Ioannides
,
E.
, and
Harris
,
T. A.
,
1985
, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
,
107
, pp.
367
378
.
8.
Zaretsky
,
E. V.
,
1994
, “
Design for Life, Plan for Death
,”
Mach. Des.
,
66
(
15
), pp.
55
59
.
9.
Raje
,
N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
, Jr.
,
2008
, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
130
(
4
), p.
042201
.
10.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
,
2010
, “
A Voronoi FE Fatigue Damage Model for Life Scatter in Rolling Contacts
,”
ASME J. Tribol.
,
132
(
2
), p.
021404
.
11.
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
Explicit Finite Element Modeling of Subsurface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
43
(
9
), pp.
1693
1702
.
12.
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2013
, “
Numerical Modeling of Sub-Surface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
59
, pp.
210
221
.
13.
Bomidi
,
J. A.
,
Weinzapfel
,
N.
,
Sadeghi
,
F.
,
Liebel
,
A.
, and
Weber
,
J.
,
2013
, “
An Improved Approach for 3D Rolling Contact Fatigue Simulations With Microstructure Topology
,”
Tribol. Trans.
,
56
(
3
), pp.
385
399
.
14.
Shen
,
Y.
,
Moghadam
,
S. M.
,
Sadeghi
,
F.
,
Paulson
,
K.
, and
Trice
,
R. W.
,
2015
, “
Effect of Retained Austenite–Compressive Residual Stresses on Rolling Contact Fatigue Life of Carburized AISI 8620 Steel
,”
Int. J. Fatigue
,
75
, pp.
135
144
.
15.
Walvekar
,
A. A.
,
Paulson
,
N.
,
Sadeghi
,
F.
,
Weinzapfel
,
N.
,
Correns
,
M.
, and
Dinkel
,
M.
,
2016
, “
A New Approach for Fatigue Damage Modeling of Sub-Surface Initiated Spalling in Large Rolling Contacts
,”
ASME J. Tribol.
,
139
(
1
), p.
011101
.
16.
Lemaître
,
J.
,
1992
,
A Course on Damage Mechanics
,
Springer
,
Berlin
.
17.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
18.
Walvekar
,
A. A.
, and
Sadeghi
,
F.
,
2017
, “
Rolling Contact Fatigue of Case Carburized Steels
,”
Int. J. Fatigue
,
95
, pp.
264
281
.
19.
Glover
,
D.
,
1982
, “
A Ball-Rod Rolling Contact Fatigue Tester
,”
ASTM STP
,
771
, pp.
107
125
.
20.
Zaretsky
,
E. V.
,
Parker
,
R. J.
, and
Anderson
,
W. J.
,
1982
, “
NASA Five-Ball Fatigue Tester—Over 20 Years of Research
,”
ASTM STP
,
771
, pp. 5–41.
21.
Nélias
,
D.
,
Dumont
,
M. L.
,
Couhier
,
F.
,
Dudragne
,
G.
, and
Flamand
,
L.
,
1998
, “
Experimental and Theoretical Investigation on Rolling Contact Fatigue of 52100 and M50 Steels Under EHL or Micro-EHL Conditions
,”
ASME J. Tribol.
,
120
(
2
), pp.
184
190
.
22.
Boyer
,
H.
,
1987
,
Case Hardening of Steel
, ASM International, Metals Park, OH.
23.
Ito
,
O.
, and
Fuller
,
E. R.
,
1993
, “
Computer Modelling of Anisotropic Grain Microstructure in Two Dimensions
,”
Acta Metall. Et Mater.
,
41
(
1
), pp.
191
198
.
24.
Mücklich
,
F.
,
Ohser
,
J.
, and
Schneider
,
G.
,
1997
, “
The Characterization of Homogeneous Polyhedral Microstructures Applying the Spatial Poisson-Voronoi Tessellation Compared to the Standard DIN 50601
,”
Z. Fur Metallkunde
,
88
(
1
), pp.
27
32
.
25.
Warhadpande
,
A.
,
Sadeghi
,
F.
,
Kotzalas
,
M. N.
, and
Doll
,
G.
,
2012
, “
Effects of Plasticity on Subsurface Initiated Spalling in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
36
(
1
), pp.
80
95
.
26.
Pavlina
,
E. J.
, and
Van Tyne
,
C. J.
,
2008
, “
Correlation of Yield Strength and Tensile Strength With Hardness for Steels
,”
J. Mater. Eng. Perform.
,
17
(
6
), pp.
888
893
.
27.
Parrish
,
G.
, and
Harper
,
G. S.
,
2013
,
Production Gas Carburising: The Pergamon Materials Engineering Practice Series
,
Pergamon Press
,
Oxford, UK
.
28.
Kachanov
,
L. M.
,
1999
, “
Rupture Time Under Creep Conditions
,”
Int. J. Fracture
,
97
(1–4), pp. 11–18.
29.
Xiao
,
Y.-C.
,
Li
,
S.
, and
Gao
,
Z.
,
1998
, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
,
20
(
7
), pp.
503
508
.
30.
Bomidi
,
J. A.
,
Weinzapfel
,
N.
,
Slack
,
T.
,
Moghaddam
,
S. M.
,
Sadeghi
,
F.
,
Liebel
,
A.
,
Weber
,
J.
, and
Kreis
,
T.
,
2013
, “
Experimental and Numerical Investigation of Torsion Fatigue of Bearing Steel
,”
ASME J. Tribol.
,
135
(
3
), p.
031103
.
You do not currently have access to this content.