In this paper, the effect of compacted graphite iron (CGI) microstructure has been investigated in tribological strategy. From industrial context, two coatings have been chosen: a single layer coating (physical vapor deposition (PVD)) and a multilayer coating (chemical vapor deposition (CVD)). Pin-on-disk tests have been done to analyze wear mechanisms and to directly obtain the coefficient of friction. Rotation speed of the disk has been adjusted to get the same linear velocity on different disk radii to get up to 150 m min−1 similar to machining condition. Three-dimensional (3D) profilometer, scanning electron microscopy, and nano-indentation were used to observe the track profiles, the pin, and the disk wears and to measure the hardness of microstructure components, respectively. Results showed that PVD coating was more abrasive and had more volume of sticking materials. Chemical vapor deposition coating, which could be the most appropriate for machining CGI, has a real antisticking property and has less friction coefficient than PVD coating. But the presence of small TiCN precipitates in CGI material has a proven negative effect in CVD coating lifetime.

References

1.
Nayyar
,
V.
,
Kaminski
,
J.
,
Kinnander
,
A.
, and
Nyborg
,
L.
,
2012
, “
An Experimental Investigation of Machinability of Graphite Cast Iron Grades; Flake, Compacted and Spheroidal Graphite Iron in Continuous Machining Operations
,”
Proc. CIRP
,
1
, pp.
488
493
.
2.
Abele
,
E.
,
Sahm
,
A.
, and
Schultz
,
H.
,
2002
, “
Wear Mechanism When Machining Compacted Graphite Iron
,”
CIRP Ann.
,
51
(
1
), pp.
53
56
.
3.
Pina
,
J. C.
,
Shafqat
,
S.
,
Kouznetsova
,
V. G.
,
Hoefnagels
,
J. P. M.
, and
Geers
,
M. G. D.
,
2016
, “
Microstructural Study of the Mechanical Response of Compacted Graphite Iron: An Experimental and Numerical Approach
,”
Mater. Sci. Eng.: A
,
658
, pp.
439
449
.
4.
Da Silva
,
M. B.
,
Naves
,
V. T. G.
,
De Melo
,
J. D. B.
,
De Andrade
,
C. L. F.
, and
Guesser
,
W. L.
,
2011
, “
Analysis of Wear of Cemented Carbide Cutting Tools During Milling Operation of Gray Iron and Compacted Graphite Iron
,”
Wear
,
271
(
9–10
), pp.
2426
2432
.
5.
Mohammed
,
W. M.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2012
, “
Modeling the Effect of Compacted Graphite Iron Microstructure on Cutting Forces and Tool Wear
,”
CIRP J. Manuf. Sci. Technol.
,
5
(
2
), pp.
87
101
.
6.
Gastel
,
M.
,
Konetschny
,
C.
,
Reuter
,
U.
,
Fasel
,
C.
,
Schulz
,
H.
,
Riedel
,
R.
, and
Ortner
,
H. M.
,
2000
, “
Investigation of the Wear Mechanism of Cubic Boron Nitride Tools Used for Machining of Compacted Graphite Iron and Gray Cast Iron
,”
Int. J. Refract. Met. Hard Mater.
,
18
(
6
), pp.
287
296
.
7.
Heck
,
M.
,
Ortner
,
H. M.
,
Flege
,
S.
,
Reuter
,
U.
, and
Ensinger
,
W.
,
2008
, “
Analytical Investigations Concerning the Wear Behaviour of Cutting Tools Used for the Machining of Compacted Graphite Iron and Gray Cast Iron
,”
Int. J. Refract. Met. Hard Mater.
,
26
(3), pp.
197
206
.
8.
Guo
,
Y.
,
Stalbaum
,
T.
,
Mann
,
J.
,
Yeung
,
H.
, and
Chandrasekar
,
S.
,
2013
, “
Modulation-Assisted High Speed Machining of Compacted Graphite Iron (CGI)
,”
J. Manuf. Processes
,
15
(
4
), pp.
426
431
.
9.
Mocellin
,
F.
,
Melleras
,
E.
,
Guesser
,
W. L.
, and
Boehs
,
L.
,
2004
, “
Study of the Machinability of Compacted Graphite Iron for Drilling Process
,”
J. Braz. Soc. Mech. Sci. Eng.
,
26
(1), pp.
22
27
.
10.
Dawson
,
S.
,
Hollinger
,
I.
,
Robbins
,
M.
,
Daeth
,
J.
,
Reuter
,
U.
, and
Schmidt
,
H.
,
2001
, “
The Effect of Metallurgical Variables on the Machinability of Compacted Graphite Iron
,”
SAE
Paper No. 2001-01-0409.
11.
Dawson
,
S.
, and
Schroeder
,
T.
,
2004
, “
Practical Application for Compacted Graphite Iron
,”
AFS Trans.
, 5, pp. 1–9.
12.
Slatter
,
T.
,
Lewis
,
R.
, and
Jones
,
A. H.
,
2011
, “
The Influence of Induction Hardening on the Impact Wear Resistance of Compacted Graphite Iron (CGI)
,”
Wear
,
270
(
3–4
), pp.
302
311
.
13.
Thakur
,
A.
, and
Gangopadhyay
,
S.
,
2016
, “
Influence of Tribological Properties on the Performance of Uncoated, CVD and PVD Coated Tools in Machining of Incoloy 825
,”
Tribol. Int.
,
102
, pp.
198
212
.
14.
Koyilada
,
B.
,
Gangopadhyay
,
S.
, and
Thakur
,
A.
,
2016
, “
Comparative Evolution of Machinability Characteristics of Nimonic C-263 Using CVD and PVD Coated Tools
,”
Measurement
,
85
, pp.
152
163
.
15.
Martini
,
C.
, and
Mori
,
A.
,
2011
, “
Face Milling of the EN AB-43300 Aluminum Alloy by PVD and CVD Coated Cemented Carbide Inserts
,”
Int. J. Refract. Met. Hard Mater.
,
29
(
6
), pp.
662
673
.
16.
Koseki
,
S.
,
Inoue
,
K.
,
Morito
,
S.
,
Ohba
,
T.
, and
Usuki
,
H.
,
2015
, “
Comparison of TiN-Coated Tools Using CVD and PVD Processes During Continuous Cutting of Ni-Based Superalloys
,”
Surf. Coat. Technol.
,
283
, pp.
353
363
.
17.
Grzesik
,
W.
,
Zalisz
,
Z.
, and
Nieslony
,
P.
,
2002
, “
Friction and Wear Testing of Multilayer Coating on Carbide Substrates for Dry Machining Application
,”
Surf. Coat. Technol.
,
155
(
1
), pp.
37
45
.
18.
Zemezemi
,
F.
,
Bensalem
,
W.
,
Rech
,
J.
,
Dougui
,
A.
, and
Kapsa
,
P.
,
2008
, “
New Tribometer Designed for the Characterisation of the Friction Properties at the Tool/Chip/Workpiece Interfaces in Machining
,”
Tribotest
,
14
, pp.
11
25
.
19.
Dobrzanski
,
L. A.
,
Pakula
,
D.
,
Kriz
,
A.
,
Sokovic
,
M.
, and
Kopac
,
J.
,
2006
, “
Tribological Properties of the PVD and CVD Coatings Deposited Onto Nitride Tool Ceramics
,”
J. Mater. Process. Technol.
,
175
(1–3), pp.
179
185
.
20.
Bobzin
,
K.
,
Bagcivan
,
N.
,
Ewering
,
M.
, and
Warnke
,
C.
,
2009
, “
Investigation on Nanolaminated TiZrN/CrN as a Tribological PVD Hard Coating for Incremental Sheet Forming Tools
,”
Adv. Eng. Mater.
,
11
(
8
), pp.
674
679
.
21.
Ufuktepe
,
Y.
,
Farha
,
A. H.
,
Kimura
,
S.
,
Hajiri
,
T.
,
Karadag
,
F.
,
Al Mamun
,
M. A.
,
Elmustafa
,
A. A.
,
Myneni
,
G.
, and
Elsayed-Ali
,
H. E.
,
2013
, “
Structural, Electronic, and Mechanical Properties of Niobium Nitride Prepared by Thermal Diffusion in Nitrogen
,”
Mater. Chem. Phys.
,
141
(
1
), pp.
393
400
.
22.
Cardinal
,
S.
,
Malchère
,
A.
,
Garnier
,
V.
, and
Fantozzi
,
G.
,
2009
, “
Microstructure and Mechanical Properties of TiC–TiN Based Cermets for Tools Application
,”
Int. J. Refract. Met. Hard Mater.
,
27
(
3
), pp.
521
527
.
You do not currently have access to this content.