Abstract

The aim of this work is to present a technical numerical method to improve the efficiency of solving the Reynolds equation for hydrodynamic bearings. Hydrodynamic bearings are largely employed in the shafting of high-speed rotating machinery to provide adequate support. The distribution of hydrodynamic pressure inside the bearing can be obtained by solving the Reynolds equation. Improving the efficiency of solving the Reynolds equation plays an essential role in the design and analysis of journal bearings. A numerical model has been developed to support the analysis and future design of hydrodynamic bearings. The primary objective of the model is to improve the efficiency of solving the Reynold equation during the steady-state and dynamic analysis. The developed method effectively combines the bi-conjugate gradient stabilized (Bi-CGSTAB) algorithm with the Reynolds boundary conditions, resulting in an effective methodology to characterize the pressure distribution within the lubricant for hydrodynamic bearings. A c++ program was implemented, and the difference between the BI-CGSTAB method and the successive over relaxation (SOR) method was evaluated against accuracy, convergence, and computational consumption. The Bi-CGSTAB algorithm has shown promising application in steady-state and dynamic analyses of hydrodynamic bearings. Validation of the results has been made with reference and analytical solutions.

References

1.
Tacconi
,
J.
,
Shahpar
,
S.
,
King
,
A.
,
Olufeagba
,
J. P.
,
Khan
,
R.
,
Sant
,
I.
, and
Yates
,
M.
,
2021
, “
Elastohydrodynamic Model of Hybrid Journal Bearings for Aero-Engine Gear Fuel Pump Applications
,”
ASME J. Tribol.
,
144
(
3
), p.
031604
.
2.
Chasalevris
,
A.
, and
Sfyris
,
D.
,
2013
, “
Evaluation of the Finite Journal Bearing Characteristics, Using the Exact Analytical Solution of the Reynolds Equation
,”
Tribol. Int.
,
57
, pp.
216
234
.
3.
Wang
,
Y. L.
,
Wu
,
J. H.
, and
Xu
,
L. S.
,
2021
, “
Influence of Power-Law Fluid on Transient Performance of Liquid Film Seal Based on the Time-Dependent Nonnewtonian Dynamic Reynolds Equation
,”
Tribol. Int.
,
159
, p.
106984
.
4.
Wang
,
Y. L.
,
Wu
,
J. H.
,
Hao
,
M. M.
, and
Xu
,
L. S.
,
2019
, “
Improved Hydrodynamic Performance of Liquid Film Seal by Considering Boundary Slip and Cavitation
,”
Ind. Lubr. Tribol.
,
71
(
9
), pp.
1108
1115
.
5.
Chen
,
W. T.
,
Chen
,
S. Y.
,
Hu
,
Z. H.
,
Tang
,
J. Y.
, and
Li
,
H. N.
,
2020
, “
Dynamic Analysis of a Bevel Gear System Equipped With Finite Length Squeeze Film Dampers for Passive Vibration Control
,”
Mech. Mach. Theory
,
147
, p.
103779
.
6.
Nie
,
S. L.
,
Guo
,
M.
,
Yin
,
F. L.
,
Ji
,
H.
,
Ma
,
Z. H.
,
Hu
,
Z.
, and
Zhou
,
X.
,
2021
, “
Research on Fluidstructure Interaction for Piston/Cylinder Tribopair of Seawater Hydraulic Axial Piston Pump in Deep-Sea Environment
,”
Ocean Eng.
,
219
, p.
108222
.
7.
Tian
,
Q.
,
Lou
,
J.
, and
Mikkola
,
A.
,
2017
, “
A New Elastohydrodynamic Lubricated Spherical Joint Model for Rigid-Flexible Multibody Dynamics
,”
Mech. Mach. Theory
,
107
, pp.
210
228
.
8.
Zhou
,
W. J.
,
Wei
,
X. S.
,
Wang
,
L. Q.
, and
Wu
,
G. K.
,
2017
, “
A Superlinear Iteration Method for Calculation of Finite Length Journal Bearing’s Static Equilibrium Position
,”
R. Soc. Open Sci.
,
4
(
5
), p.
161059
.
9.
Hariharan
,
G.
, and
Pai
,
R.
,
2018
, “
Mathematical Formulation of a Modified Film Thickness Equation for Multipad Externally Adjustable Fluid Film Bearing
,”
Cogent Eng.
,
5
(
1
), p.
1493672
.
10.
Xiang
,
G.
, and
Han
,
Y. F.
,
2020
, “
Study on the Tribo-Dynamic Performances of Water Lubricated Microgroove Bearings During Start-Up
,”
Tribol. Int.
,
151
, p.
106395
.
11.
Bal
,
H.
, and
Akturk
,
N.
,
2020
, “
Vibration Modeling of Wind Turbine Shaft as Rigid Shaft Supported by ehl Contact Ball Bearings With Overhung Disc System
,”
Tribol. Int.
,
151
, p.
106481
.
12.
Xie
,
Z. L.
,
Shen
,
N. W.
,
Zhu
,
W. D.
,
Tian
,
W. C.
, and
Hao
,
L.
,
2021
, “
Theoretical and Experimental Investigation on the Influences of Misalignment on the Lubrication Performances and Lubrication Regimes Transition of Water Lubricated Bearing
,”
Mech. Syst. Signal Process
,
149
, p.
107211
.
13.
Xiang
,
G.
,
Han
,
Y. F.
,
Wang
,
J. X.
,
Wang
,
J. F.
, and
Ni
,
X. K.
,
2019
, “
Coupling Transient Mixed Lubrication and Wear for Journal Bearing Modeling
,”
Tribol. Int.
,
138
, pp.
1
15
.
14.
He
,
Z. P.
,
Zhang
,
C.
,
Li
,
J. Q.
,
Zhao
,
Y. Y.
, and
Sun
,
A. J.
,
2021
, “
Numerical Analysis and Optimization of Rectangular Texture for Gas Foil Thrust Bearing
,”
Proc. Inst. Mech. Eng., Part J
,
235
(
8
), pp.
1599
1613
.
15.
Zhang
,
X. Y.
,
Liu
,
C. P.
, and
Zhao
,
B.
,
2021
, “
An Optimization Research on Groove Textures of a Journal Bearing Using Particle Swarm Optimization Algorithm
,”
Mech. Ind.
,
22
, p.
1
.
16.
Tang
,
H. S.
,
Ren
,
Y.
,
Xiang
,
J. W.
, and
Anil
,
K.
,
2021
, “
Evaluation and Optimization of Axial Piston Pump Textured Slipper Bearings With Spherical Dimples Based on Hybrid Genetic Algorithm
,”
Proc. Inst. Mech. Eng., Part J
,
235
(
8
), pp.
1719
1741
.
17.
Chen
,
D. J.
,
Zhao
,
Y.
,
Zha
,
C. Q.
,
Pan
,
R.
, and
Fan
,
J. W.
,
2021
, “
Performance Evaluation of Different Types of Micro-Textured Hydrostatic Spindles Under the Main Influencing Factors
,”
Proc. Inst. Mech. Eng., Part J
,
235
(
10
), pp.
2169
2183
.
18.
Han
,
Y. X.
, and
Fu
,
Y. H.
,
2020
, “
Influence of Micro-Grooves on the Lubrication Performance of a Misaligned Bearing
,”
Proc. Inst. Mech. Eng., Part J
,
234
(
6
), pp.
887
899
.
19.
Rosenkranz
,
A.
,
Costa
,
H. L.
,
Profito
,
F.
,
Gachot
,
C.
,
Medina
,
S.
, and
Dini
,
D.
,
2019
, “
Influence of Surface Texturing on Hydrodynamic Friction in Plane Converging Bearings—An Experimental and Numerical Approach
,”
Tribol. Int.
,
134
, pp.
190
204
.
20.
Manser
,
B.
,
Belaidi
,
I.
,
Hamrani
,
A.
,
Khelladi
,
S.
, and
Bakir
,
F.
,
2019
, “
Performance of Hydrodynamic Journal Bearing Under the Combined Influence of Textured Surface and Journal Misalignment: A Numerical Survey
,”
C. R. Mec.
,
347
(
2
), pp.
141
165
.
21.
Ma
,
X.
,
Wang
,
Q. J.
,
Lu
,
X. Q.
, and
Mehta
,
V. S.
,
2019
, “
Piston Surface Design to Improve the Lubrication Performance of a Swash Plate Pump
,”
Tribol. Int.
,
132
, pp.
275
285
.
22.
Rodrigues
,
G. W.
, and
Bittencourt
,
M. L.
,
2020
, “
Surface Virtual Texturing of the Journal Bearings of a Three-Cylinder Ethanol Engine
,”
Ind. Lubr. Tribol.
,
72
(
9
), pp.
1059
1073
.
23.
Novotny
,
P.
, and
Hrabovsky
,
J.
,
2020
, “
Efficient Computational Modelling of Low Loaded Bearings of Turbocharger Rotors
,”
Int. J. Mech. Sci.
,
174
, p.
105505
.
24.
Novotny
,
P.
,
Hrabovsky
,
J.
,
Juracka
,
J.
,
Klima
,
J.
, and
Hort
,
V.
,
2019
, “
Effective Thrust Bearing Model for Simulations of Transient Rotor Dynamics
,”
Int. J. Mech. Sci.
,
157
, pp.
374
383
.
25.
Wang
,
N.
,
Chen
,
H. Y.
,
Chen
,
Y. W.
, and
Lin
,
Y. C.
,
2019
, “
The Benefits of Concurrent Computing in Tribology System Design
,”
Tribol. Int.
,
132
, pp.
85
98
.
26.
Lei
,
J. S.
,
Zhou
,
R. P.
,
Sheng
,
Y. Z.
, and
Chen
,
H.
,
2019
, “
Numerical Calculation of oil Film for Ship Stern Bearing Based on Matrix Method
,”
2018 2nd International Conference on Functional Materials and Chemical Engineering (ICFMCE 2018)
,
Abu Dhabi, UAE
,
Nov. 20–22
, p.
272
.
27.
Profito
,
F. J.
,
Tomanik
,
E.
, and
Zachariadis
,
D. C.
,
2016
, “
Effect of Cylinder Liner Wear on the Mixed Lubrication Regime of Tlocrs
,”
Tribol. Int.
,
93
, pp.
723
732
.
28.
Fan
,
X.
,
Jianping
,
J.
,
Zhao
,
W.
, and
Xiaolin
,
B.
,
2012
, “
Calculation of Oil Film Pressure Distribution of Journal Bearing Based on Finite Difference Method
,”
Lubr. Eng.
,
37
(
2
), pp.
12
15
.
29.
Fanjuan
,
M.
, and
Yongping
,
D.
,
2008
, “
Analysis of Film Pressure of Radial Sliding Bearing
,”
Bearing
,
1
(
1
), pp.
23
25
.
30.
Chatzisavvas
,
I.
,
Boyaci
,
A.
,
Koutsovasilis
,
P.
, and
Schweizer
,
B.
,
2016
, “
Influence of Hydrodynamic Thrust Bearings on the Nonlinear Oscillations of Highspeed Rotors
,”
J. Sound Vib.
,
380
, pp.
224
241
.
31.
Junbo
,
Z.
,
2010
, “
Research on Turbine Bearing Lubrication Characteristics and Bearng-Rotor System Dynamic Analysis
,” Wuhan University of Technology, Wuhan, China.
32.
Gropper
,
D.
,
Wang
,
L.
, and
Harvey
,
T. J.
,
2016
, “
Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings
,”
Tribol. Int.
,
94
, pp.
509
529
.
33.
Chan
,
C. W.
,
Chang
,
S. H.
, and
Jeng
,
Y. R.
,
2016
, “
High-Efficiency Computing Technology for Thermohydrodynamic Lubrication Analysis
,”
Tribol. Trans.
,
59
(
2
), pp.
229
236
.
34.
Wang
,
N. Z.
,
Cha
,
K. C.
, and
Huang
,
H. C.
,
2012
, “
Fast Convergence of Iterative Computation for Incompressible-Fluid Reynolds Equation
,”
ASME J. Tribol.
,
134
(
2
), p.
024504
.
35.
Nicoletti
,
R.
,
2013
, “
Comparison Between a Meshless Method and the Finite Difference Method for Solving the Reynolds Equation in Finite Bearings
,”
ASME J. Tribol.
,
135
(
4
), p.
044501
.
36.
Huapeng
,
W.
,
Xianmei
,
K.
, and
Darong
,
C.
,
2000
, “
The Application of GMRES Algorithm in Calculating Reynolds Equation
,”
Lubr. Eng.
,
1
(
1
), pp.
2
4
.
37.
Vandervorst
,
H. A.
,
1992
, “
Bi-cgstab—A Fast and Smoothly Converging Variant of bi-cg for the Solution of Nonsymmetric Linear-Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.
You do not currently have access to this content.