Abstract

To slow down the surface wear process of double involute gears (DIG), the surface adhesive wear model and wear life prediction model are established according to its meshing characteristics, combined with the modified Archard wear model and mixed elastohydrodynamic lubrication (EHL) model. This paper studies the surface wear and wear life of DIG, compares it with common involute gears (CIG), and discusses the influence of different factors on its surface wear. Results show that the adhesive wear distribution of DIG is similar to that of CIG. Properly reducing l* and increasing y* can reduce surface wear and prolong wear life. The reasonable selection of lubrication states and working conditions can be beneficial to enhance its tooth surface wear resistance.

References

1.
Zhou
,
C. J.
,
Wang
,
H. B.
,
Lei
,
H. Y.
, and
Liu
,
Z.
,
2018
, “
Calculating and Measuring Methods for Gear Wear and Its Suppression Techniques
,”
J. Beijing Univ. Technol.
,
44
, pp.
987
1000
.
2.
Shen
,
Z. X.
,
Qiao
,
B. J.
,
Yang
,
L. H.
,
Luo
,
W.
,
Yang
,
Z. B.
, and
Chen
,
X. F.
,
2021
, “
Fault Mechanism and Dynamic Modeling of Planetary Gear With Gear Wear
,”
Mech. Mach. Theory
,
155
, p.
104098
.
3.
Liu
,
X. Z.
,
2022
, “
Vibration Modelling and Fault Evolution Symptom Analysis of a Planetary Gear Train for Sun Gear Wear Status Assessment
,”
Mech. Syst. Signal Process.
,
166
, p.
108403
.
4.
Atansiu
,
V.
,
Oprisan
,
C.
, and
Leohchi
,
D.
,
2014
, “
The Effect of Tooth Wear on the Dynamic Transmission Error of Helical Gears With Smaller Number of Pinion Teeth
,”
Appl. Mech. Mater.
,
657
, pp.
649
653
.
5.
Feng
,
K.
,
Borghesani
,
P.
,
Smith
,
W. A.
,
Randall
,
R. B.
,
Chin
,
Z. Y.
,
Ren
,
J.
, and
Peng
,
Z.
,
2020
, “
Vibration-Based Updating of Wear Prediction for Spur Gears
,”
Wear
,
426–427
, pp.
1410
1415
.
6.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
7.
Anderson
,
S.
,
1975
,
“Partial EHD Theory and Initial Wear of Gears”
,
Royal Institute of Technology
,
Stockholm
.
8.
Flodin
,
A.
, and
Andersson
,
S.
,
1997
, “
Simulation of Mild Wear in Spur Gears
,”
Wear
,
207
(
1–2
), pp.
16
23
.
9.
Flodin
,
A.
, and
Andersson
,
S.
,
2000
, “
Simulation of Mild Wear in Helical Gears
,”
Wear
,
241
(
2
), pp.
23
128
.
10.
Flodin
,
A.
, and
Andersson
,
S.
,
2001
, “
A Simplified Models for Wear Prediction in Helical Gears
,”
Wear
,
249
(
3–4
), pp.
285
292
.
11.
Kuang
,
J. H.
, and
Lin
,
A. D.
,
2001
, “
The Effect of Tooth Wear on the Vibration Spectrum of a Spur Gear Pair
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
311
317
.
12.
Liu
,
H. L.
,
Liu
,
H. J.
,
Zhu
,
C. C.
, and
Tang
,
J. Y.
,
2020
, “
Study on Gear Contact Fatigue Failure Competition Mechanism Considering Tooth Wear Evolution
,”
Tribol. Int.
,
147
, p.
106277
.
13.
Zhang
,
J.
,
Bian
,
S. Y.
,
Lu
,
Q.
, and
Liu
,
X. Z.
,
2017
, “
Quasi-Static-Model-Based Wear Analysis of Spur Gears
,”
J. Mech. Eng.
,
53
(
5
), pp.
136
145
.
14.
Feng
,
K.
,
Smith
,
W. A.
, and
Peng
,
Z. X.
,
2021
, “
Use of an Improved Vibration-Based Updating Methodology for Gear Wear Prediction
,”
Eng. Failure Anal.
,
120
, p.
105066
.
15.
Ding
,
H. L.
, and
Kahraman
,
A.
,
2007
, “
Interactions Between Nonlinear Spur Gear Dynamics and Surface Wear
,”
J. Sound Vib.
,
307
(
3–5
), pp.
662
679
.
16.
Xiao
,
Z. L.
,
Shi
,
X.
,
Wang
,
X.
,
Ma
,
X. L.
, and
Han
,
Y. T.
,
2021
, “
Lubrication Analysis and Wear Mechanism of Heavily Loaded Herringbone Gears With Profile Modifications in Full Film and Mixed Lubrication Point Contacts
,”
Wear
,
477
, p.
203790
.
17.
Zhang
,
J. G.
,
Liu
,
S. J.
, and
Fang
,
T.
,
2018
, “
Prediction of Gear Wear Rate in Mixed Lubrication and Experimental Verification
,”
J. South China Univ. Technol. (Nat. Sci. Ed.)
,
46
, pp.
22
30
.
18.
Zhang
,
J. G.
,
Liu
,
S. J.
,
Fang
,
T.
, and
Jin
,
Y.
,
2018
, “
Tooth Surface Wear of Spur Gears With Oil Lubrication
,”
J. Northeast. Univ. (Nat. Sci.)
,
39
, pp.
1495
1505
. 1005-3026(2018)10-1495-07
19.
Sun
,
X. Q.
,
Wang
,
T.
,
Zhang
,
R. L.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2021
, “
Analysis of the Influence of Progressive Wear of Helical Gear on Gear Vibration Characteristic
,”
J. Mech. Transm.
,
45
, pp.
17
22
.
20.
Zhu
,
D.
,
Martin
,
A.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
,
Lisowsky
,
B. D.
, and
Wang
,
Q. J.
,
2007
, “
Simulation of Sliding Wear in Mixed Lubrication
,”
ASME J. Tribol.
,
129
(
3
), pp.
544
552
.
21.
Wang
,
H. B.
,
Tang
,
L. W.
,
Zhou
,
C. J.
, and
Shi
,
Z. Y.
,
2021
, “
Wear Life Prediction Method of Crowned Double Helical Gear Drive in Point Contact Mixed Elastohydrodynamic Lubrication
,”
Wear
,
484–485
, p.
204041
.
22.
Wang
,
X. S.
,
Wu
,
S. J.
,
Chen
,
J.
, and
Peng
,
Z. M.
,
2014
, “
Dynamic Surface Wear Characteristics in Spur Gear Transmission System With Dynamic Loads and Wear Coefficient
,”
J. Cent. South Univ. (Sci. Technol.)
,
45
, pp.
408
413
.
23.
Guilbault
,
R.
, and
Lalonde
,
S.
,
2019
, “
A Stochastic Prediction of Roughness Evolution in Dynamic Contact Modelling Applied to Gear Mild Wear and Contact Fatigue
,”
Tribol. Int.
,
140
, p.
105854
.
24.
Fan
,
Z. M.
,
Zhou
,
W. F.
,
Wang
,
R. X.
, and
Wang
,
N.
,
2016
, “
Effect of Tooth Waist Order Parameters of Double Involute Gears on Lubrication Performance of Gear Drive
,”
Ind. Lubr. Tribol.
,
68
(
6
), pp.
671
675
.
25.
Fan
,
Z. M.
, and
Zhang
,
G. H.
,
2002
, “
Analysis of Meshing Characteristics of Step Type Double Involute Gear
,”
Chin. J. Mech. Eng.
,
38
, pp.
73
76
.
26.
Yin
,
Z. M.
,
Fan
,
Z. M.
, and
Jiang
,
F.
,
2021
, “
Oil Film Stiffness of Double Involute Gears Based on Thermal EHL Theory
,”
Chin. J. Mech. Eng.
,
34
(
1
), p.
60
.
27.
Wu
,
S.
, and
Cheng
,
H. S.
,
1993
, “
Sliding Wear Calculation in Spur Gears
,”
ASME J. Tribol.
,
115
(
3
), pp.
493
503
.
28.
Zhou
,
C. J.
,
Lei
,
Y. Y.
,
Wang
,
H. B.
, and
Han
,
X.
,
2018
, “
Adhesive Wear Models for Helical Gears Under Quasi-Static and Dynamic Loads
,”
J. Mech. Eng.
,
54
(
23
), pp.
10
22
.
29.
Yang
,
P.
, and
Yang
,
P. R.
,
2007
, “
Analysis on the Thermal Elastohydrodynmaic Lubrication of Tapered Rollers in Opposite Orientation
,”
Tribol. Int.
,
40
(
10–12
), pp.
1627
1637
.
30.
Yin
,
Z. M.
,
Jiang
,
F.
, and
Fan
,
Z. M.
,
2021
, “
Temperature Field of Double Involute Gear Based on TEHL
,”
Tribology
,
41
(
2
), pp.
268
279
.
31.
Zhang
,
J. G.
,
Liu
,
S. J.
, and
Fang
,
T.
,
2017
, “
On the Prediction of Friction Coefficient and Wear in Spiral Bevel Gears With Mixed TEHL
,”
Tribol. Int.
,
115
, pp.
535
545
.
32.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2012
, “
Film Thickness and Asperity Load Formulas for Line Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness
,”
ASME J. Tribol.
,
134
(
1
), p.
011503
.
33.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2015
, “
An Engineering Approach for Rapid Evaluation of Traction Coefficient and Wear in Mixed EHL
,”
Tribol. Int.
,
92
, pp.
184
190
.
34.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2015
, “
On the Prediction of Steady-State Wear Rate in Spur Gears
,”
Wear
,
342–343
, pp.
234
243
.
35.
Tian
,
X.
, and
Kennedy
,
F. E.
,
1994
, “
Maximum and Average Flash Temperature in Sliding Contacts
,”
ASME J. Tribol.
,
116
(
1
), pp.
167
174
.
36.
Wang
,
H. B.
,
Zhou
,
C. J.
,
Lei
,
Y. Y.
, and
Liu
,
Z. M.
,
2019
, “
An Adhesive Wear Model for Helical Gears in Line-Contact Mixed Elastohydrodynamic Lubrication
,”
Wear
,
426–427
, pp.
896
909
.
37.
Yin
,
Z. M.
,
Fan
,
Z. M.
, and
Wang
,
M. K.
,
2020
, “
Thermal Elastohydrodynamic Lubrication Characteristics of Double Involute Gears at the Graded Position of Tooth Waist
,”
Tribol. Int.
,
144
, pp.
106028
.
You do not currently have access to this content.