Abstract

Polytetrafluoroethylene (PTFE) has a low friction coefficient but poor wear resistance (k ∼ 10−3 mm3/Nm) against various surfaces. Early mechanical modeling suggests the enhanced anti-wear performance of PTFE composites (k ∼ 10−5 mm3/Nm) relies on preferential load support by fillers. Recent studies found that tribochemical polarization of PTFE could trigger the formation of highly protective transfer films, thus resulting in exceptionally low wear-rates (k ∼ 10−7 mm3/Nm) in certain composites. Although tribochemical interactions were believed to play an important role in the wear reduction mechanisms, the atomistic details have yet to be fully described. Environmental and computational experiments in this study allowed detailed mechanistic investigations of four representative metal-, ceramic-, carbon-, and polymer-filled PTFE composites. Results found that (1) in dry argon environment, filler load support and composite microstructure dominate the wear resistance and (2) in humid air, the formation of a protective, polarized transfer film could further reduce composite wear-rate by tenfold or more. Density-functional theory (DFT) calculations supported the hypothesis that strong electrophilic atoms at certain solid surfaces tend to mechanochemically defluorinate PTFE molecule, which leads to tribochemical production and accumulation of polarized PTFE near the sliding surfaces. Molecular dynamics simulations suggested that the strengthening of nonbonding interactions (e.g., electrostatic, hydrogen-bonding) by polar polymer filler (i.e., PAI) or carboxylated PTFE could improve transfer film cohesion and adhesion strength, which was likely responsible for the additional wear reduction in humid air for certain PTFE composites. The relation between the atomistic interactions and the macroscopic wear behavior of composites was systematically discussed.

References

1.
Scharf
,
T. W.
, and
Prasad
,
S. V.
,
2012
, “
Solid Lubricants: A Review
,”
J. Mater. Sci.
,
48
(
2
), pp.
511
531
.
2.
Puts
,
G. J.
,
Crouse
,
P.
, and
Ameduri
,
B. M.
,
2019
, “
Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer
,”
Chem. Rev.
,
119
(
3
), pp.
1763
1805
.
3.
Lancaster
,
J. K.
,
1972
, “
Polymer-Based Bearing Materials—The Role of Fillers and Fibre Reinforcement in Wear
,”
Wear
,
22
(
3
), p.
412
413
.
4.
Tanaka
,
K.
,
Uchiyama
,
Y.
, and
Toyooka
,
S.
,
1973
, “
The Mechanism of Wear of Polytetrafluoroethylene
,”
Wear
,
23
(
2
), pp.
153
172
.
5.
Tanaka
,
K.
, and
Kawakami
,
S.
,
1982
, “
Effect of Various Fillers on the Friction and Wear of Polytetrafluoroethylene-Based Composites
,”
Wear
,
79
(
2
), pp.
221
234
.
6.
Deli
,
G.
,
Qunji
,
X.
, and
Hongli
,
W.
,
1991
, “
ESCA Study on Tribochemical Characteristics of Filled PTFE
,”
Wear
,
148
(
1
), pp.
161
169
.
7.
Blanchet
,
T. A.
, and
Kennedy
,
F. E.
,
1992
, “
Sliding Wear Mechanism of Polytetrafluoroethylene (PTFE) and PTFE Composites
,”
Wear
,
153
(
1
), pp.
229
243
.
8.
Sawyer
,
W. G.
,
Freudenberg
,
K. D.
,
Bhimaraj
,
P.
, and
Schadler
,
L. S.
,
2003
, “
A Study on the Friction and Wear Behavior of PTFE Filled With Alumina Nanoparticles
,”
Wear
,
254
(
5–6
), pp.
573
580
.
9.
Burris
,
D. L.
, and
Sawyer
,
W. G.
,
2006
, “
Improved Wear Resistance in Alumina-PTFE Nanocomposites With Irregular Shaped Nanoparticles
,”
Wear
,
260
(
7–8
), pp.
915
918
.
10.
McElwain
,
S. E.
,
Blanchet
,
T. A.
,
Schadler
,
L. S.
, and
Sawyer
,
W. G.
,
2008
, “
Effect of Particle Size on the Wear Resistance of Alumina-Filled PTFE Micro- and Nanocomposites
,”
Tribol. Trans.
,
51
(
3
), pp.
247
253
.
11.
Harris
,
K. L.
,
Pitenis
,
A. A.
,
Sawyer
,
W. G.
,
Krick
,
B. A.
,
Blackman
,
G. S.
,
Kasprzak
,
D. J.
, and
Junk
,
C. P.
,
2015
, “
PTFE Tribology and the Role of Mechanochemistry in the Development of Protective Surface Films
,”
Macromolecules
,
48
(
11
), pp.
3739
3745
.
12.
Krick
,
B. A.
,
Pitenis
,
A. A.
,
Harris
,
K. L.
,
Junk
,
C. P.
,
Sawyer
,
W. G.
,
Brown
,
S. C.
,
Rosenfeld
,
H. D.
, et al
,
2016
, “
Ultralow Wear Fluoropolymer Composites: Nanoscale Functionality From Microscale Fillers
,”
Tribol. Int.
,
95
(
1
), pp.
245
255
.
13.
Sun
,
W.
,
Liu
,
X.
,
Liu
,
K.
,
Xu
,
J.
,
Wang
,
W.
, and
Ye
,
J.
,
2020
, “
Paradoxical Filler Size Effect on Composite Wear: Filler–Matrix Interaction and Its Tribochemical Consequences
,”
Tribol. Lett.
,
68
(
4
), pp.
1
19
.
14.
Bhargava
,
S.
, and
Blanchet
,
T. A.
,
2016
, “
Unusually Effective Nanofiller a Contradiction of Microfiller-Specific Mechanisms of PTFE Composite Wear Resistance?
ASME J. Tribol.
,
138
(
4
), p.
042001
.
15.
Alam
,
K. I.
,
Dorazio
,
A.
, and
Burris
,
D. L.
,
2020
, “
Polymers Tribology Exposed: Eliminating Transfer Film Effects to Clarify Ultralow Wear of PTFE
,”
Tribol. Lett.
,
68
(
2
), pp.
1
13
.
16.
Nak-Ho
,
S.
, and
Suh
,
N. P.
,
1979
, “
Effect of Fiber Orientation on Friction and Wear of Fiber Reinforced Polymeric Composites
,”
Wear
,
53
(
1
), pp.
129
141
.
17.
Blanchet
,
T. A.
,
1995
, “
A Model for Polymer Composite Wear Behavior Including Preferential Load Support and Surface Accumulation of Filler Particulates
,”
Tribol. Trans.
,
38
(
4
), pp.
821
828
.
18.
Li
,
F.
,
Hu
,
K.-A.
,
Li
,
J.-L.
, and
Zhao
,
B.-Y.
,
2001
, “
The Friction and Wear Characteristics of Nanometer ZnO Filled Polytetrafluoroethylene
,”
Wear
,
249
(
10–11
), pp.
877
882
.
19.
Kandanur
,
S. S.
,
Rafiee
,
M. A.
,
Yavari
,
F.
,
Schrameyer
,
M.
,
Yu
,
Z.-Z.
,
Blanchet
,
T. A.
, and
Koratkar
,
N.
,
2012
, “
Suppression of Wear in Graphene Polymer Composites
,”
Carbon
,
50
(
9
), pp.
3178
3183
.
20.
Kandanur
,
S. S.
,
Schrameyer
,
M. A.
,
Jung
,
K. F.
,
Makowiec
,
M. E.
,
Bhargava
,
S.
, and
Blanchet
,
T. A.
,
2014
, “
Effect of Activated Carbon and Various Other Nanoparticle Fillers on PTFE Wear
,”
Tribol. Trans.
,
57
(
5
), pp.
821
830
.
21.
Sun
,
W.
,
Liu
,
X.
,
Liu
,
K.
,
Wang
,
W.
, and
Ye
,
J.
,
2020
, “
Ultralow Wear PTFE Composites Filled With Beryllia and Germania Particles
,”
Wear
,
450–451
(
1
), pp.
203270
.
22.
Sun
,
W.
,
Liu
,
X.
,
Song
,
Q.
,
Liu
,
K.
,
Wang
,
W.
,
Lu
,
Y.
, and
Ye
,
J.
,
2021
, “
Mechanochemical Effect of Filler Surface Functionality on Fluoropolymer Tribology
,”
Macromolecules
,
54
(
13
), pp.
6417
6429
.
23.
Sun
,
W.
,
Liu
,
X.
,
Liu
,
K.
,
Xu
,
J.
,
Lu
,
Y.
, and
Ye
,
J.
,
2021
, “
Mechanochemical Functionality of Graphene Additives in Ultralow Wear Polytetrafluoroethylene Composites
,”
Carbon
,
184
(
1
), pp.
312
321
.
24.
Khare
,
H. S.
,
Moore
,
A. C.
,
Haidar
,
D. R.
,
Gong
,
L.
,
Ye
,
J.
,
Rabolt
,
J. F.
, and
Burris
,
D. L.
,
2015
, “
Interrelated Effects of Temperature and Environment on Wear and Tribochemistry of an Ultralow Wear PTFE Composite
,”
J. Phys. Chem. C
,
119
(
29
), pp.
16518
16527
.
25.
Pitenis
,
A. A.
,
Harris
,
K. L.
,
Junk
,
C. P.
,
Blackman
,
G. S.
,
Sawyer
,
W. G.
, and
Krick
,
B. A.
,
2015
, “
Ultralow Wear PTFE and Alumina Composites: It is All About Tribochemistry
,”
Tribol. Lett.
,
57
(
1
), pp.
1
8
.
26.
Jones
,
M. R.
,
McGhee
,
E. O.
,
Marshall
,
S. L.
,
Hart
,
S. M.
,
Urueña
,
J. M.
,
Niemi
,
S. R.
,
Pitenis
,
A. A.
, and
Schulze
,
K. D.
,
2018
, “
The Role of Microstructure in Ultralow Wear Fluoropolymer Composites
,”
Tribol. Trans.
,
62
(
1
), pp.
135
143
.
27.
Campbell
,
K. L.
,
Sidebottom
,
M. A.
,
Atkinson
,
C. C.
,
Babuska
,
T. F.
,
Kolanovic
,
C. A.
,
Boulden
,
B. J.
,
Junk
,
C. P.
, and
Krick
,
B. A.
,
2019
, “
Ultralow Wear PTFE-Based Polymer Composites—The Role of Water and Tribochemistry
,”
Macromolecules
,
52
(
14
), pp.
5268
5277
.
28.
Ye
,
J.
,
Khare
,
H. S.
, and
Burris
,
D. L.
,
2013
, “
Transfer Film Evolution and Its Role in Promoting Ultra-Low Wear of a PTFE Nanocomposite
,”
Wear
,
297
(
1–2
), pp.
1095
1102
.
29.
Ye
,
J.
,
Moore
,
A. C.
, and
Burris
,
D. L.
,
2015
, “
Transfer Film Tenacity: A Case Study Using Ultra-Low-Wear Alumina–PTFE
,”
Tribol. Lett.
,
59
(
3
), p.
50
.
30.
Krick
,
B. A.
,
Ewin
,
J. J.
, and
McCumiskey
,
E. J.
,
2014
, “
Tribofilm Formation and Run-In Behavior in Ultra-Low-Wearing Polytetrafluoroethylene (PTFE) and Alumina Nanocomposites
,”
Tribol. Trans.
,
57
(
6
), pp.
1058
1065
.
31.
Bahadur
,
S.
,
2000
, “
The Development of Transfer Layers and Their Role in Polymer Tribology
,”
Wear
,
245
(
1
), pp.
92
99
.
32.
Menzel
,
B.
, and
Blanchet
,
T. A.
,
2005
, “
Enhanced Wear Resistance of Gamma-Irradiated PTFE and FEP Polymers and the Effect of Post-Irradiation Environmental Handling
,”
Wear
,
258
(
5–6
), pp.
935
941
.
33.
Gong
,
D. L.
,
Bing
,
Z.
,
Qun-Ji
,
X.
, and
Hong-Li
,
W.
,
1980
, “
Effect of Tribochemical Reaction of Polytetrafluoroethylene Transferred Film With Substrates on Its Wear Behaviour
,”
Wear
,
137
(
2
), pp.
267
273
.
34.
Gao
,
J.
, and
Dang
,
H.
,
1988
, “
Molecule Structure Variations in Friction of Stainless Steel/PTFE and its Composite
,”
J. Appl. Polym. Sci.
,
36
(
1
), pp.
73
85
.
35.
Fan
,
X.
,
Li
,
G.
,
Guo
,
Y.
,
Zhang
,
L.
,
Xu
,
Y.
,
Zhao
,
F.
, and
Zhang
,
G.
,
2020
, “
Role of Reinforcement Types and Silica Nanoparticles on Tribofilm Growth at PTFE-Steel Interface
,”
Tribol. Int.
,
143
(
1
), p.
106035
.
36.
Burris
,
D. L.
, and
Sawyer
,
W. G.
,
2006
, “
A Low Friction and Ultra Low Wear Rate PEEK/PTFE Composite
,”
Wear
,
261
(
3–4
), pp.
410
418
.
37.
Ye
,
J.
,
Wei
,
J.
,
Zeng
,
J.
,
Alam
,
K. I.
,
Sun
,
W.
,
Liu
,
X.
,
Liu
,
K.
, and
Burris
,
D. L.
,
2020
, “
Interfacial Gradient and Its Role in Ultralow Wear Sliding
,”
J. Phys. Chem. C
,
124
(
11
), pp.
6188
6196
.
38.
Burris
,
D. L.
, and
Sawyer
,
W. G.
,
2009
, “
Measurement Uncertainties in Wear Rates
,”
Tribol. Lett.
,
36
(
1
), pp.
81
87
.
39.
Burris
,
D. L.
, and
Sawyer
,
W. G.
,
2009
, “
Addressing Practical Challenges of Low Friction Coefficient Measurements
,”
Tribol. Lett.
,
35
(
1
), pp.
17
23
.
40.
Konôpka
,
M.
,
Turanský
,
R.
,
Reichert
,
J.
,
Fuchs
,
H.
,
Marx
,
D.
, and
Štich
,
I.
,
2008
, “
Mechanochemistry and Thermochemistry Are Different: Stress-Induced Strengthening of Chemical Bonds
,”
Phys. Rev. Lett.
,
100
(
11
), p.
115503
.
41.
Onodera
,
T.
,
Kawasaki
,
K.
,
Nakakawaji
,
T.
,
Higuchi
,
Y.
,
Ozawa
,
N.
,
Kurihara
,
K.
, and
Kubo
,
M.
,
2014
, “
Effect of Tribochemical Reaction on Transfer-Film Formation by Poly(Tetrafluoroethylene)
,”
J. Phys. Chem. C
,
118
(
22
), pp.
11820
11826
.
42.
Onodera
,
T.
,
Nakakawaji
,
T.
,
Adachi
,
K.
,
Kurihara
,
K.
, and
Kubo
,
M.
,
2016
, “
Tribochemical Degradation of Polytetrafluoroethylene Catalyzed by Copper and Aluminum Surfaces
,”
J. Phys. Chem. C
,
120
(
20
), pp.
10857
10865
.
43.
Krick
,
B. A.
,
Ewin
,
J. J.
,
Blackman
,
G. S.
,
Junk
,
C. P.
, and
Gregory Sawyer
,
W.
,
2012
, “
Environmental Dependence of Ultra-Low Wear Behavior of Polytetrafluoroethylene (PTFE) and Alumina Composites Suggests Tribochemical Mechanisms
,”
Tribol. Int.
,
51
(
1
), pp.
42
46
.
44.
Pitenis
,
A. A.
,
Ewin
,
J. J.
,
Harris
,
K. L.
,
Sawyer
,
W. G.
, and
Krick
,
B. A.
,
2013
, “
In Vacuo Tribological Behavior of Polytetrafluoroethylene (PTFE) and Alumina Nanocomposites: The Importance of Water for Ultralow Wear
,”
Tribol. Lett.
,
53
(
1
), pp.
189
197
.
45.
Alam
,
K. I.
, and
Burris
,
D. L.
,
2021
, “
Ultralow Wear Poly(Tetrafluoroethylene): A Virtuous Cycle of Wear Reduction and Tribochemical Accumulation
,”
J. Phys. Chem. C
,
125
(
35
), pp.
19417
19427
.
46.
Burris
,
D. L.
,
Boesl
,
B.
,
Bourne
,
G. R.
, and
Sawyer
,
W. G.
,
2007
, “
Polymeric Nanocomposites for Tribological Applications
,”
Macromol. Mater. Eng.
,
292
(
4
), pp.
387
402
.
47.
Bhargava
,
S.
,
Koratkar
,
N.
, and
Blanchet
,
T. A.
,
2015
, “
Effect of Platelet Thickness on Wear of Graphene–Polytetrafluoroethylene (PTFE) Composites
,”
Tribol. Lett.
,
59
(
1
), pp.
1
12
.
48.
Koch
,
E.-C.
,
2012
,
Metal-Fluorocarbon Based Energetic Materials
,
John Wiley & Sons
,
New York
.
49.
Bhargava
,
S.
,
Makowiec
,
M. E.
, and
Blanchet
,
T. A.
,
2020
, “
Wear Reduction Mechanisms Within Highly Wear-Resistant Graphene- and Other Carbon-Filled PTFE Nanocomposites
,”
Wear
,
444–445
(
1
), p.
203163
.
50.
Chen
,
L.
, and
Qian
,
L.
,
2020
, “
Role of Interfacial Water in Adhesion, Friction, and Wear—A Critical Review
,”
Friction
,
9
(
1
), pp.
1
28
.
51.
Myshkin
,
N.
, and
Kovalev
,
A.
,
2018
, “
Adhesion and Surface Forces in Polymer Tribology—A Review
,”
Friction
,
6
(
2
), pp.
143
155
.
52.
Makinson
,
K. R.
, and
Tabor
,
D.
,
1964
, “
The Friction and Transfer of Polytetrafluoroethylene
,”
Proc. R. Soc. London A
,
281
(
1384
), pp.
49
61
.
53.
Onodera
,
T.
,
Park
,
M.
,
Souma
,
K.
,
Ozawa
,
N.
, and
Kubo
,
M.
,
2013
, “
Transfer-Film Formation Mechanism of Polytetrafluoroethylene: A Computational Chemistry Approach
,”
J. Phys. Chem. C
,
117
(
20
), pp.
10464
10472
.
54.
Kim
,
G.
,
Byun
,
S.
,
Yang
,
Y.
,
Kim
,
S.
,
Kwon
,
S.
, and
Jung
,
Y.
,
2015
, “
Film Shrinkage Inducing Strong Chain Entanglement in Fluorinated Polyimide
,”
Polymer
,
68
(
1
), pp.
293
301
.
55.
Khedkar
,
J.
,
Negulescu
,
I.
, and
Meletis
,
E. I.
,
2002
, “
Sliding Wear Behavior of PTFE Composites
,”
Wear
,
252
(
5–6
), pp.
361
369
.
You do not currently have access to this content.