Abstract

This investigation explores the reinforcement effects of both boron nitride nanotubes (BNNTs) and micro-boron carbide (μB4C) on the tribological and mechanical properties of aluminum matrix composite (MMC) cold-sprayed coatings. The synthesis process involved high-energy ball milling (HEBM) and cold spraying with helium to create four distinct Al-MMC coatings on a magnesium (AZ31) substrate. These coatings consisted of pure aluminum, a composition containing 4 vol% B4C, a composition with 4 vol% BNNTs, and a composition with 2 vol% B4C and 2 vol% BNNTs. Successful dispersion of nanoparticles within the aluminum matrix was achieved. The hardness of the coatings exhibited significant improvements compared to the pure aluminum coating. Specifically, the Al-BNNT coating showed a hardness increase of 14.1%, the Al-B4C-BNNT coating displayed a hardness increase of 20.8%, and the Al-B4C coating demonstrated the highest increase of 33.3% over the pure aluminum coating. Furthermore, the Al-B4C coating exhibited remarkable reductions in wear volume loss and wear track depth, amounting to eight and two orders of magnitude, respectively. Adhesion testing revealed that the Al-B4C-BNNT coating failed cohesively, while the pure aluminum coating failed adhesively at approximately the same force. The Al-B4C coating experienced a combination of the two failure modes at a 31.2% increase in force compared to the pure aluminum coating. Tensile testing stress versus strain curves indicated that the load was partially supported by the cold spray coating until the coating ruptured.

References

1.
Ralls
,
A. M.
,
Mao
,
B.
, and
Menezes
,
P. L.
,
2023
, “
Tribological Performance of Laser Shock Peened Cold Spray Additive Manufactured 316L Stainless Steel
,”
ASME J. Tribol.
,
145
(
7
), p.
071702
.
2.
Kumar
,
S.
,
Kumar
,
M.
, and
Jindal
,
N.
,
2020
, “
Overview of Cold Spray Coatings Applications and Comparisons: A Critical Review
,”
World J. Eng.
,
17
(
1
), pp.
27
51
.
3.
Khodabakhshi
,
F.
,
Marzbanrad
,
B.
,
Jahed
,
H.
, and
Gerlich
,
A. P.
,
2018
, “
Interfacial Bonding Mechanisms Between Aluminum and Titanium During Cold Gas Spraying Followed by Friction-Stir Modification
,”
Appl. Surf. Sci.
,
462
, pp.
739
752
.
4.
Lek
,
J. Y.
,
Bhowmik
,
A.
,
Tan
,
A. W.-Y.
,
Sun
,
W.
,
Song
,
X.
,
Zhai
,
W.
,
Buenconsejo
,
P. J.
,
Li
,
F.
,
Liu
,
E.
, and
Lam
,
Y. M.
,
2018
, “
Understanding the Microstructural Evolution of Cold Sprayed Ti-6Al-4V Coatings on Ti-6Al-4V Substrates
,”
Appl. Surf. Sci.
,
459
, pp.
492
504
.
5.
Peat
,
T.
,
Galloway
,
A.
,
Toumpis
,
A.
,
McNutt
,
P.
, and
Iqbal
,
N.
,
2017
, “
The Erosion Performance of Cold Spray Deposited Metal Matrix Composite Coatings With Subsequent Friction Stir Processing
,”
Appl. Surf. Sci.
,
396
, pp.
1635
1648
.
6.
Huang
,
R.
, and
Fukanuma
,
H.
,
2012
, “
Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits
,”
J. Therm. Spray Technol.
,
21
(
3
), pp.
541
549
.
7.
Xie
,
J.
,
Nélias
,
D.
,
Walter-Le Berre
,
H.
,
Ogawa
,
K.
, and
Ichikawa
,
Y.
,
2015
, “
Simulation of the Cold Spray Particle Deposition Process
,”
ASME J. Tribol.
,
137
(
4
), p.
041101
.
8.
Singh
,
S.
,
Raman
,
R. S.
,
Berndt
,
C. C.
, and
Singh
,
H.
,
2021
, “
Influence of Cold Spray Parameters on Bonding Mechanisms: A Review
,”
Metals
,
11
(
12
), p.
2016
.
9.
Champagne
,
V.
, and
Helfritch
,
D.
,
2016
, “
The Unique Abilities of Cold Spray Deposition
,”
Int. Mater. Rev.
,
61
(
7
), pp.
437
455
.
10.
Gilmore
,
D.
,
Dykhuizen
,
R.
,
Neiser
,
R.
,
Smith
,
M.
, and
Roemer
,
T.
,
1999
, “
Particle Velocity and Deposition Efficiency in the Cold Spray Process
,”
J. Therm. Spray Technol.
,
8
(
4
), pp.
576
582
.
11.
Sharma
,
M. M.
,
Eden
,
T. J.
, and
Golesich
,
B. T.
,
2015
, “
Effect of Surface Preparation on the Microstructure, Adhesion, and Tensile Properties of Cold-Sprayed Aluminum Coatings on AA2024 Substrates
,”
J. Therm. Spray Technol.
,
24
(
3
), pp.
410
422
.
12.
Tariq
,
N.
,
Gyansah
,
L.
,
Wang
,
J.
,
Qiu
,
X.
,
Feng
,
B.
,
Siddique
,
M.
, and
Xiong
,
T.
,
2018
, “
Cold Spray Additive Manufacturing: A Viable Strategy to Fabricate Thick B4C/Al Composite Coatings for Neutron Shielding Applications
,”
Surf. Coat. Technol.
,
339
, pp.
224
236
.
13.
Yandouzi
,
M.
,
Böttger
,
A.
,
Hendrikx
,
R.
,
Brochu
,
M.
,
Richer
,
P.
,
Charest
,
A.
, and
Jodoin
,
B.
,
2010
, “
Microstructure and Mechanical Properties of B4C Reinforced Al-Based Matrix Composite Coatings Deposited by CGDS and PGDS Processes
,”
Surf. Coat. Technol.
,
205
(
7
), pp.
2234
2246
.
14.
Sova
,
A.
,
Papyrin
,
A.
, and
Smurov
,
I.
,
2009
, “
Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray
,”
J. Therm. Spray Technol.
,
18
(
4
), pp.
633
641
.
15.
Li
,
J.
,
Hu
,
K.
, and
Zhou
,
Y.
,
2002
, “
Formation of TiB2/TiN Nanocomposite Powder by High Energy Ball Milling and Subsequent Heat Treatment
,”
Mater. Sci. Eng. A
,
326
(
2
), pp.
270
275
.
16.
Kostoglou
,
N.
,
Tampaxis
,
C.
,
Charalambopoulou
,
G.
,
Constantinides
,
G.
,
Ryzhkov
,
V.
,
Doumanidis
,
C.
,
Matovic
,
B.
,
Mitterer
,
C.
, and
Rebholz
,
C.
,
2020
, “
Boron Nitride Nanotubes Versus Carbon Nanotubes: A Thermal Stability and Oxidation Behavior Study
,”
Nanomaterials
,
10
(
12
), p.
2435
.
17.
Chopra
,
N. G.
,
Luyken
,
R.
,
Cherrey
,
K.
,
Crespi
,
V. H.
,
Cohen
,
M. L.
,
Louie
,
S. G.
, and
Zettl
,
A.
,
1995
, “
Boron Nitride Nanotubes
,”
Science
,
269
(
5226
), pp.
966
967
.
18.
Lahiri
,
D.
,
Hadjikhani
,
A.
,
Zhang
,
C.
,
Xing
,
T.
,
Li
,
L. H.
,
Chen
,
Y.
, and
Agarwal
,
A.
,
2013
, “
Boron Nitride Nanotubes Reinforced Aluminum Composites Prepared by Spark Plasma Sintering: Microstructure, Mechanical Properties and Deformation Behavior
,”
Mater. Sci. Eng. A
,
574
, pp.
149
156
.
19.
Yanar
,
N.
,
Yang
,
E.
,
Park
,
H.
,
Son
,
M.
, and
Choi
,
H.
,
2020
, “
Boron Nitride Nanotube (BNNT) Membranes for Energy and Environmental Applications
,”
Membranes
,
10
(
12
), p.
430
.
20.
Kim
,
J. H.
,
Pham
,
T. V.
,
Hwang
,
J. H.
,
Kim
,
C. S.
, and
Kim
,
M. J.
,
2018
, “
Boron Nitride Nanotubes: Synthesis and Applications
,”
Nano Converg.
,
5
(
1
), pp.
1
13
.
21.
Li
,
Z.
,
Fan
,
G.
,
Guo
,
Q.
,
Li
,
Z.
,
Su
,
Y.
, and
Zhang
,
D.
,
2015
, “
Synergistic Strengthening Effect of Graphene-Carbon Nanotube Hybrid Structure in Aluminum Matrix Composites
,”
Carbon
,
95
, pp.
419
427
.
22.
Kwon
,
H.
,
Lee
,
G.-G.
,
Kim
,
S.-G.
,
Lee
,
B.-W.
,
Seo
,
W.-C.
, and
Leparoux
,
M.
,
2015
, “
Mechanical Properties of Nanodiamond and Multi-Walled Carbon Nanotubes Dual-Reinforced Aluminum Matrix Composite Materials
,”
Mater. Sci. Eng. A
,
632
, pp.
72
77
.
23.
Zhang
,
X.
,
Li
,
S.
,
Pan
,
D.
,
Pan
,
B.
, and
Kondoh
,
K.
,
2018
, “
Microstructure and Synergistic-Strengthening Efficiency of CNTs-SiCp Dual-Nano Reinforcements in Aluminum Matrix Composites
,”
Compos. A Appl. Sci. Manuf.
,
105
, pp.
87
96
.
24.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.
25.
ASTM Standard E8/E8M-16a
,
2016
, “
Standard Test Methods for Tension Testing of Metallic Materials
,” ASTM International, West Conshohocken, PA.
26.
Chua
,
A.
,
2021
,
Mechanical Behavior of Cold Sprayed Cu-Ni Coating
,
Naval Postgraduate School
.
27.
Zhou
,
H.
,
Li
,
C.
,
Yang
,
H.
,
Luo
,
X.
,
Yang
,
G.
,
Li
,
W.
,
Hussain
,
T.
, and
Li
,
C.
,
2019
, “
Pores Structure Change Induced by Heat Treatment in Cold-Sprayed Ti6Al4V Coating
,”
J. Therm. Spray Technol.
,
28
(
6
), pp.
1199
1211
.
28.
Ansell
,
G.
, and
Lenel
,
F.
,
1960
, “
Criteria for Yielding of Dispersion-Strengthened Alloys
,”
Acta Metall.
,
8
(
9
), pp.
612
616
.
29.
Leyland
,
A.
, and
Matthews
,
A.
,
2004
, “
Design Criteria for Wear-Resistant Nanostructured and Glassy-Metal Coatings
,”
Surf. Coat. Technol.
,
177
, pp.
317
324
.
30.
Kulkarni
,
A. R.
,
Sahu
,
A.
,
Palani
,
I.
, and
Jayaprakash
,
M.
,
2021
, “
Parametric Investigations in Pulsed Laser-Assisted Hatch Patterning and Nitriding of A356 Cast Aluminum Alloy in Liquid Nitrogen Environment for Improving Mechanical and Tribological Properties
,”
Surf. Interfaces
,
27
, p.
101557
.
31.
Nemane
,
V.
, and
Chatterjee
,
S.
,
2022
, “
Nanomechanical, Tribological, and Scratch Properties of Electroless Ni-BW Alloy and Ni-BW-SiC Composite Coatings
,”
ASME J. Tribol.
,
144
(
5
), p.
051402
.
32.
Molero
,
G.
,
Du
,
S.
,
Mamak
,
M.
,
Agerton
,
M.
,
Hossain
,
M. M.
, and
Sue
,
H.-J.
,
2019
, “
Experimental and Numerical Determination of Adhesive Strength in Semi-Rigid Multi-layer Polymeric Systems
,”
Polym. Test.
,
75
, pp.
85
92
.
33.
Du
,
S.
,
Zhu
,
Z.
,
Liu
,
C.
,
Zhang
,
T.
,
Hossain
,
M. M.
, and
Sue
,
H.
,
2021
, “
Experimental Observation and Finite Element Method Modeling on Scratch-Induced Delamination of Multilayer Polymeric Structures
,”
Polym. Eng. Sci.
,
61
(
6
), pp.
1742
1754
.
34.
Kulkarni
,
A. R.
,
Shukla
,
A. K.
,
Prabu
,
S. S. M.
,
Subramaniam
,
S.
,
Balaji
,
V. P.
,
Palani
,
I. A.
, and
Jayaprakash
,
M.
,
2021
, “
Investigations on Enhancing the Surface Mechanical and Tribological Properties of A356 Al Alloy Using Pulsed Laser-Assisted Nitriding
,”
Appl. Surf. Sci.
,
540
(
P2
), p.
148361
.
35.
Rao
,
A.
,
Manikandan
,
M.
,
Kumar
,
A.
,
Subramaniam
,
S.
,
Balaji
,
V. P.
,
Palani
,
I. A.
, and
Jayaprakash
,
M.
,
2021
, “
Surface & Coatings Technology Influence of Laser-Nitriding on Mechanical and Elevated Temperature Fretting Wear Behavior of A356-Alloy
,”
Surf. Coat. Technol.
,
413
, p.
127072
.
36.
Du
,
S.
,
Hamdi
,
M.
, and
Sue
,
H.-J.
,
2020
, “
Experimental and FEM Analysis of Mar Behavior on Amorphous Polymers
,”
Wear
,
444
, p.
203155
.
37.
Du
,
S.
,
Hamdi
,
M.
, and
Sue
,
H. J.
,
2020
, “
Finite Element Modeling on Barrel Mar Behavior of Amorphous Polymers
,”
The Annual Technical Conference for Plastic Professionals
,
Virtual, Online
,
Mar. 30–May 5
.
38.
Du
,
S.
,
Mullins
,
M.
,
Hamdi
,
M.
, and
Sue
,
H.-J.
,
2020
, “
Quantitative Modeling of Scratch Behavior of Amorphous Polymers at Elevated Temperatures
,”
Polymer
,
197
, p.
122504
.
39.
Fang
,
L.
,
Xu
,
Y.
,
Gao
,
L.
,
Suo
,
X.
,
Gong
,
J.
, and
Li
,
H.
,
2018
, “
Cold-Sprayed Aluminum-Silica Composite Coatings Enhance Antiwear/Anticorrosion Performances of AZ31 Magnesium Alloy
,”
Adv. Mater. Sci. Eng.
,
2018
, p.
3215340
.
40.
Tkachenko
,
S.
,
Datskevich
,
O.
,
Kulak
,
L.
,
Persson
,
C.
, and
Engqvist
,
H.
,
2019
, “
The Effect of Al Addition on the Tribological Behavior of Ti–Si–Zr Alloys
,”
ASME J. Tribol.
,
141
(
4
), p.
041604
.
41.
Abrahamson
,
G. R.
,
Duwell
,
E. J.
, and
McDonald
,
W. J.
,
1991
, “
Wear and Lubrication as Observed on a Lap Table With Loose and Bonded Abrasive Grit
,”
ASME J. Tribol.
,
113
(
2
), pp.
249
254
.
42.
Liu
,
Y.
,
Zhu
,
Z.
,
Wang
,
Z.
,
Zhu
,
B.
,
Wang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
Flow and Friction Behaviors of 6061 Aluminum Alloy at Elevated Temperatures and Hot Stamping of a B-Pillar
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
4063
4083
.
You do not currently have access to this content.