Abstract

The water-lubricated bearings tend to be turbulent and cavitating when running at a high speed. However, the modeling of the water-lubricated bearing considering the turbulence and cavitation effects has not been studied thoroughly. For high-speed water-lubricated journal bearings, a turbulent flow model considering cavitation effect was proposed on the basis of two-phase flow theory. The simulation was conducted to show the influence of turbulence and cavitation effects on the static characteristics of the water-lubricated journal bearing. The proposed model was validated with the test by using a self-developed experimental setup. The result shows that the turbulence effect has a great impact on static characteristics of bearing, and cavitation effect significantly affects the minimum film thickness and leakage flowrate, while the friction torque is hardly affected by the cavitation effect.

References

1.
Nosonovsky
,
M.
, and
Bhushan
,
B.
,
2012
,
Green Tribology: Biomimetics, Energy Conservation and Sustainability
,
Springer
,
Berlin; New York
.
2.
Hirani
,
H.
, and
Verma
,
M.
,
2009
, “
Tribological Study of Elastomeric Bearings for Marine Propeller Shaft System
,”
Tribol. Int.
,
42
(
2
), pp.
378
390
.
3.
Fuming
,
K.
,
Xincong
,
Z.
,
Jian
,
H.
,
Xiaoran
,
Z.
, and
Jun
,
W.
,
2018
, “
Tribological Properties of Nitrile Rubber/UHMWPE/Nano-MoS2 Water-Lubricated Bearing Material Under Low Speed and Heavy Duty
,”
ASME J. Tribol.
,
140
(
6
), p.
061301
.
4.
Xie
,
Z.
,
Song
,
P.
,
Hao
,
L.
,
Shen
,
N.
,
Zhu
,
W.
,
Liu
,
H.
,
Shi
,
J.
,
Wang
,
Y.
, and
Tian
,
W.
,
2020
, “
Investigation on Effects of Fluid-Structure-Interaction (FSI) on the Lubrication Performances of Water Lubricated Bearing in Primary Circuit Loop System of Nuclear Power Plant
,”
Ann. Nucl. Energy
,
141
(
1
), p.
107355
.
5.
Avishai
,
D.
, and
Morel
,
G.
,
2021
, “
Experimental Investigation of Lubrication Regimes of a Water-Lubricated Bearing in the Propulsion Train of a Marine Vessel
,”
ASME J. Tribol.
,
143
(
4
), p.
041803
.
6.
Zhang
,
X.
,
Yin
,
Z.
,
Gao
,
G.
, and
Li
,
Z.
,
2015
, “
Determination of Stiffness Coefficients of Hydrodynamic Water-Lubricated Plain Journal Bearings
,”
Tribol. Int.
,
85
(
5
), pp.
37
47
.
7.
Majumdar
,
B. C.
,
Pai
,
R.
, and
Hargreaves
,
D. J.
,
2004
, “
Analysis of Water-Lubricated Journal Bearings With Multiple Axial Grooves
,”
Proc. Inst. Mech. Eng. Part J.: J. Eng. Tribol.
,
218
(
2
), pp.
135
146
.
8.
Feng
,
H.
,
Jiang
,
S.
, and
Ji
,
A.
,
2019
, “
Investigations of the Static and Dynamic Characteristics of Water-Lubricated Hydrodynamic Journal Bearing Considering Turbulent, Thermohydrodynamic and Misaligned Effects
,”
Tribol. Int.
,
130
(
2
), pp.
245
260
.
9.
Jiang
,
S.
,
Liu
,
P.
, and
Lin
,
X.
,
2022
, “
Study on Static Characteristics of Water-Lubricated Textured Spiral Groove Thrust Bearing Using Laminar Cavitating Flow Lubrication Model
,”
ASME J. Tribol.
,
144
(
4
), p.
041803
.
10.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.
11.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2011
, “
A Modification of the Switch Function in the Elrod Cavitation Algorithm
,”
ASME J. Tribol.
,
133
(
2
), p.
024501
.
12.
Miraskari
,
M.
,
Hemmati
,
F.
,
Jalali
,
A.
,
Alqaradawi
,
M. Y.
, and
Gadala
,
M. S.
,
2017
, “
A Robust Modification to the Universal Cavitation Algorithm in Journal Bearings
,”
ASME J. Tribol.
,
139
(
3
), p.
031703
.
13.
Brunetière
,
N.
,
2018
, “
A General Model for Liquid and Gas Lubrication, Including Cavitation
,”
ASME J. Tribol.
,
140
(
2
), p.
021702
.
14.
Lin
,
X.
,
Jiang
,
S.
,
Zhang
,
C.
, and
Liu
,
X.
,
2018
, “
Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Effects of Cavitation, Inertia and Turbulence
,”
Tribol. Int.
,
119
(
3
), pp.
645
658
.
15.
Lin
,
X.
,
Wang
,
R.
,
Zhang
,
S.
,
Zhang
,
C.
, and
Jiang
,
S.
,
2019
, “
Study of Cavitation Bubbles Evolution for High-Speed Water-Lubricated Spiral Groove Thrust Bearings
,”
ASME J. Tribol.
,
141
(
5
), p.
051703
.
16.
Lin
,
X.
,
Wang
,
R.
,
Zhang
,
S.
, and
Jiang
,
S.
,
2020
, “
Study on Dynamic Characteristics for High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Cavitating Effect
,”
Tribol. Int.
,
143
(
3
), p.
106022
.
17.
Zhang
,
S.
,
Jiang
,
S.
, and
Lin
,
X.
,
2020
, “
Comparative Study on Dynamic Characteristics of Double-Pad Inwardly and Outwardly Pumping Water-Lubricated Spiral-Groove Thrust Bearings
,”
ASME J. Tribol.
,
142
(
9
), p.
091803
.
18.
Frêne
,
J.
,
Arghir
,
M.
, and
Constantinescu
,
V.
,
2006
, “
Combined Thin-Film and Navier–Stokes Analysis in High Reynolds Number Lubrication
,”
Tribol. Int.
,
39
(
8
), pp.
734
747
.
19.
Zhang
,
H.
,
Jiang
,
S.
, and
Lin
,
X.
,
2023
, “
Study of Dynamic Characteristics of Water-Lubricated Journal Bearings Using Thermohydrodynamic Cavitating Lubrication Model
,”
Tribol. Trans.
,
66
(
2
), pp.
381
397
.
20.
Ni
,
J.
,
Wang
,
G.
, and
Zhang
,
H.
,
1991
,
The Basic Theory of Solid-Liquid Two-Phase Flow and Its Latest Applications
,
Science Press
,
Beijing
.
21.
Borka
,
Z.
, and
Jakobsen
,
H. A.
,
2012
, “
Least Squares Higher Order Method for the Solution of a Combined Multifluid-Population Balance Model: Modeling and Implementation Issues
,”
CHISA 2012
,
42
(
7
), pp.
1121
1132
.
22.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Proceedings of the 5th International Conference on Multiphase Flow (ICMF 2004), No. 152
,
Yokohama, Japan
,
May 30–June 3
.
23.
Coulaloglou
,
C. A.
, and
Tavlarides
,
L. L.
,
1977
, “
Description of Interaction Processes in Agitated Liquid-Liquid Dispersions
,”
Chem. Eng. Sci.
,
32
(
11
), pp.
1289
1297
.
24.
Pan
,
S. S.
,
1987
, “
Spectrum of Distribution of Gas Nucleus Scale
,”
J. Hydrodyn.
,
2
(
4
), pp.
57
65
.
25.
Lehr
,
F.
, and
Mewes
,
D.
,
2001
, “
A Transport Equation for the Interfacial Area Density Applied to Bubble Columns
,”
Chem. Eng. Sci.
,
56
(
3
), pp.
1159
1166
.
26.
Lehr
,
F.
,
Millies
,
M.
, and
Mewes
,
D.
,
2002
, “
Bubble-Size Distributions and Flow Fields in Bubble Columns
,”
AIChE J.
,
48
(
11
), pp.
2426
2443
.
27.
Dorao
,
C. A.
, and
Jakobsen
,
H. A.
,
2006
, “
A Least Squares Method for the Solution of Population Balance Problems
,”
Comput. Chem. Eng.
,
30
(
3
), pp.
535
547
.
28.
Taylor
,
G. I.
,
1923
, “
Stability of a Viscous Liquid Contained Between Two Rotating Cylinders
,”
Phil. Trans. R. Soc. Lond. Ser., A
,
223
(
605–615
), pp.
289
243
.
29.
Reichardt
,
H.
,
1946
, “
The Laws of Cavitation Bubbles as Axially Symmetrical Bodies in a Flow
,” Ministry of Aircraft Production (Great Britain). Reports and Translation. No 766, pp.
322
326
..
You do not currently have access to this content.