Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Contact electrification is a universal phenomenon that commonly occurs in almost every solid–solid contact pair. The tribo-charges deposited on two surfaces by contact electrification can significantly affect adhesion; however, contact electrification is often overlooked in the study of adhesive contact. Here, we develop an analytical model to investigate electroadhesion during the contact phase between two initially uncharged dielectric surfaces, namely, an elastic parabolic surface and a rigid flat. A system of nonlinear equations is derived to describe the relationship between the indentation, normal load, radius of contact area, and radius of the charged zone using the Barthel–Maugis–Dugdale model (Barthel, 1999, “Modelling the Adhesion of Spheres: When the Form of the Interaction Is Complex, Colloids. Surf., A., 149, pp. 99105.). The analytical results show good agreement with the numerical results of the full self-consistent contact model. When contact electrification leads to a higher tribo-charge density and a larger charged zone, it has a greater impact on the normal traction, interfacial gap, force-approach curves, jump-out, and dissipated energy. The analytical model developed in this study serves as the foundation for advances in rough surface electroadhesive contact and electroadhesion testing, and it sheds light on the usage of adhesive joints in ultra-high vacuum environments and outer space, where contact electrification has a significant impact.

References

1.
Israelachvili
,
J. N.
,
2011
,
Intermolecular and Surface Forces
,
Academic Press
,
New York
.
2.
Papangelo
,
A.
, and
Ciavarella
,
M.
,
2019
, “
On Mixed-Mode Fracture Mechanics Models for Contact Area Reduction Under Shear Load in Soft Materials
,”
J. Mech. Phys. Solids.
,
124
, pp.
159
171
.
3.
Xu
,
Y.
,
Scheibert
,
J.
,
Gadegaard
,
N.
, and
Mulvihill
,
D. M.
,
2022
, “
An Asperity-Based Statistical Model for the Adhesive Friction of Elastic Nominally Flat Rough Contact Interfaces
,”
J. Mech. Phys. Solids.
,
164
, p.
104878
.
4.
Brink
,
T.
, and
Molinari
,
J.-F.
,
2019
, “
Adhesive Wear Mechanisms in the Presence of Weak Interfaces: Insights From an Amorphous Model System
,”
Phys. Rev. Mater.
,
3
(
5
), p.
053604
.
5.
Scheibert
,
J.
,
Sahli
,
R.
, and
Peyrard
,
M.
,
2020
, “
Onset of Sliding of Elastomer Multicontacts: Failure of a Model of Independent Asperities to Match Experiments
,”
Front. Mech. Eng.
,
6
, p.
18
.
6.
Sahli
,
R.
,
Pallares
,
G.
,
Ducottet
,
C.
,
Ben Ali
,
I.
,
Al Akhrass
,
S.
,
Guibert
,
M.
, and
Scheibert
,
J.
,
2018
, “
Evolution of Real Contact Area Under Shear and the Value of Static Friction of Soft Materials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
3
), pp.
471
476
.
7.
Lowell
,
J.
, and
Rose-Innes
,
A.
,
1980
, “
Contact Electrification
,”
Adv. Phys.
,
29
(
6
), pp.
947
1023
.
8.
Lacks
,
D. J.
, and
Shinbrot
,
T.
,
2019
, “
Long-Standing and Unresolved Issues in Triboelectric Charging
,”
Nature Rev. Chem.
,
3
(
8
), pp.
465
476
.
9.
Wang
,
Z. L.
, and
Wang
,
A. C.
,
2019
, “
On the Origin of Contact-electrification
,”
Mater. Today
,
30
, pp.
34
51
.
10.
Horn
,
R. G.
, and
Smith
,
D. T.
,
1992
, “
Contact Electrification and Adhesion Between Dissimilar Materials
,”
Science
,
256
(
5055
), pp.
362
364
.
11.
Horn
,
R. G.
,
Smith
,
D.
, and
Grabbe
,
A.
,
1993
, “
Contact Electrification Induced by Monolayer Modification of a Surface and Relation to Acid-Base Interactions
,”
Nature
,
366
(
6454
), pp.
442
443
.
12.
Davies
,
D. K.
,
1973
, “
Surface Charge and the Contact of Elastic Solids
,”
J. Phys. D: Appl. Phys.
,
6
(
9
), p.
1017
.
13.
Kinloch
,
A. J.
,
1980
, “
Review: The Science of Adhesion: Part 1; Surface and Interfacial Aspects
,”
J. Mater. Sci.
,
15
, pp.
2141
2166
.
14.
Muller
,
V. M.
,
Aleinikova
,
I. N.
,
Shcherbina
,
G. I.
,
Toporov
,
Y. P.
, and
Derjaguin
,
B. V.
,
1989
, “
The Influence of Contact Electrification on the Adhesion of Dielectric Elastic Spheres Subjected to External Loads Before Detachment
,”
J. Adhes. Sci. Technol.
,
3
(
1
), pp.
107
130
.
15.
Hays
,
D. A.
,
1991
, “Role of Electrostatics in Adhesion,”
Fundamentals of Adhesion
, L. H. Lee, ed.,
Springer
,
Heidelberg
, pp.
249
278
.
16.
McGuiggan
,
P. M.
,
2008
, “
Stick Slip Contact Mechanics Between Dissimilar Materials: Effect of Charging and Large Friction
,”
Langmuir
,
24
(
8
), pp.
3970
3976
.
17.
Roberts
,
A. D.
,
1977
, “
Surface Charge Contribution in Rubber Adhesion and Friction
,”
J. Phys. D: Appl. Phys.
,
10
(
13
), p.
1801
.
18.
Cole
,
J. J.
,
Barry
,
C. R.
,
Wang
,
X.
, and
Jacobs
,
H. O.
,
2010
, “
Nanocontact Electrification Through Forced Delamination of Dielectric Interfaces
,”
ACS. Nano.
,
4
(
12
), pp.
7492
7498
.
19.
Stork
,
N. E.
,
1980
, “
Experimental Analysis of Adhesion of Chrysolina polita (chrysomelidae: Coleoptera) on a Variety of Surfaces
,”
J. Exp. Biol.
,
88
(
1
), pp.
91
108
.
20.
Song
,
Y.
,
Wang
,
Z.
,
Zhou
,
J.
,
Li
,
Y.
, and
Dai
,
Z.
,
2018
, “
Synchronous Measurement of Tribocharge and Force at the Footpads of Freely Moving Animals
,”
Friction
,
6
(
1
), pp.
75
83
.
21.
Autumn
,
K.
,
Sitti
,
M.
,
Liang
,
Y. A.
,
Peattie
,
A. M.
,
Hansen
,
W. R.
,
Sponberg
,
S.
,
Kenny
,
T. W.
,
Fearing
,
R.
,
Israelachvili
,
J. N.
, and
Full
,
R. J.
,
2002
, “
Evidence for Van Der Waals Adhesion in Gecko Setae
,”
Proc. Natl. Acad. Sci. U. S. A.
,
99
(
19
), pp.
12252
12256
.
22.
Kovalev
,
A. E.
, and
Gorb
,
S. N.
,
2012
, “
Charge Contribution to the Adhesion Performance of Polymeric Microstructures
,”
Tribol. Lett.
,
48
(
1
), pp.
103
109
.
23.
Wang
,
Z. L.
,
2013
, “
Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors
,”
ACS. Nano.
,
7
(
11
), pp.
9533
9557
.
24.
Xu
,
Y.
,
Min
,
G.
,
Gadegaard
,
N.
,
Dahiya
,
R.
, and
Mulvihill
,
D. M.
,
2020
, “
A Unified Contact Force-Dependent Model for Triboelectric Nanogenerators Accounting for Surface Roughness
,”
Nano Energy
,
76
, p.
105067
.
25.
Min
,
G.
,
Xu
,
Y.
,
Cochran
,
P.
,
Gadegaard
,
N.
,
Mulvihill
,
D. M.
, and
Dahiya
,
R.
,
2021
, “
Origin of the Contact Force-Dependent Response of Triboelectric Nanogenerators
,”
Nano Energy
,
83
, p.
105829
.
26.
Lapčinskis
,
L.
,
Oras
,
S.
,
Käämbre
,
T.
,
Vlassov
,
S.
,
Antsov
,
M.
,
Timusk
,
M.
, and
Šutka
,
A.
,
2020
, “
The Adhesion-Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators
,”
Macromol. Mater. Eng.
,
305
(
1
), p.
1900638
.
27.
Sayfidinov
,
K.
,
Cezan
,
S. D.
,
Baytekin
,
B.
, and
Baytekin
,
H. T.
,
2018
, “
Minimizing Friction, Wear, and Energy Losses by Eliminating Contact Charging
,”
Sci. Adv.
,
4
(
11
), p.
eaau3808
.
28.
Cole
,
J. J.
,
Barry
,
C. R.
,
Knuesel
,
R. J.
,
Wang
,
X.
, and
Jacobs
,
H. O.
,
2011
, “
Nanocontact Electrification: Patterned Surface Charges Affecting Adhesion, Transfer, and Printing
,”
Langmuir
,
27
(
11
), pp.
7321
7329
.
29.
Grzybowski
,
B. A.
,
Winkleman
,
A.
,
Wiles
,
J. A.
,
Brumer
,
Y.
, and
Whitesides
,
G. M.
,
2003
, “
Electrostatic Self-Assembly of Macroscopic Crystals Using Contact Electrification
,”
Nat. Mater.
,
2
(
4
), pp.
241
245
.
30.
Sotthewes
,
K.
,
Roozendaal
,
G.
,
Šutka
,
A.
, and
Jimidar
,
I. S.
,
2024
, “
Toward the Assembly of 2D Tunable Crystal Patterns of Spherical Colloids on a Wafer-Scale
,”
ACS. Appl. Mater. Interfaces.
,
16
(
9
), pp.
12007
12017
.
31.
Sun
,
J.
,
Zhang
,
X.
,
Du
,
S.
,
Pu
,
J.
,
Wang
,
Y.
,
Yuan
,
Y.
,
Qian
,
L.
, and
Francisco
,
J. S.
,
2023
, “
Charge Density Evolution Governing Interfacial Friction
,”
J. Am. Chem. Soc.
,
145
(
9
), pp.
5536
5544
.
32.
Papangelo
,
A.
,
Lovino
,
R.
, and
Ciavarella
,
M.
,
2020
, “
Electroadhesive Sphere-Flat Contact Problem: A Comparison Between DMT and Full Iterative Finite Element Solutions
,”
Tribol. Int.
,
152
, p.
106542
.
33.
Yang
,
W.
,
Wang
,
X.
,
Li
,
H.
,
Wu
,
J.
, and
Hu
,
Y.
,
2018
, “
Comprehensive Contact Analysis for Vertical-Contact-Mode Triboelectric Nanogenerators With Micro-/Nano-Textured Surfaces
,”
Nano Energy
,
51
, pp.
241
249
.
34.
Yang
,
W.
,
Wang
,
X.
,
Li
,
H.
,
Wu
,
J.
,
Hu
,
Y.
,
Li
,
Z.
, and
Liu
,
H.
,
2019
, “
Fundamental Research on the Effective Contact Area of Micro-/Nano-Textured Surface in Triboelectric Nanogenerator
,”
Nano Energy
,
57
, pp.
41
47
.
35.
Xu
,
Y.
,
Wu
,
S.
,
Zhu
,
Y.
, and
Wu
,
J.
,
2024
, “
An Adhesion Model for Contact Electrification
,”
Int. J. Mech. Sci.
,
272
, p.
109280
.
36.
Barthel
,
E.
,
1999
, “
Modelling the Adhesion of Spheres: When the Form of the Interaction is Complex
,”
Colloids. Surf., A.
,
149
(
1–3
), pp.
99
105
.
37.
Shen
,
X.
,
Wang
,
A. E.
,
Sankaran
,
R. M.
, and
Lacks
,
D. J.
,
2016
, “
First-Principles Calculation of Contact Electrification and Validation by Experiment
,”
J. Electrost.
,
82
, pp.
11
16
.
38.
Wu
,
J.
,
Wang
,
X.
,
Li
,
H.
,
Wang
,
F.
,
Yang
,
W.
, and
Hu
,
Y.
,
2018
, “
Insights Into the Mechanism of Metal-Polymer Contact Electrification for Triboelectric Nanogenerator Via First-Principles Investigations
,”
Nano Energy
,
48
, pp.
607
616
.
39.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The Jkr-dmt Transition Using a Dugdale Model
,”
J. Colloid. Interface. Sci.
,
150
(
1
), pp.
243
269
.
40.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. Lond. A. Math. Phys. Sci.
,
324
(
1558
), pp.
301
313
.
41.
Lowengrub
,
M.
, and
Sneddon
,
I.
,
1965
, “
The Distribution of Stress in the Vicinity of An External Crack in an Infinite Elastic Solid
,”
Int. J. Eng. Sci.
,
3
(
4
), pp.
451
460
.
42.
Kim
,
K.-S.
,
McMeeking
,
R.
, and
Johnson
,
K.
,
1998
, “
Adhesion, Slip, Cohesive Zones and Energy Fluxes for Elastic Spheres in Contact
,”
J. Mech. Phys. Solids.
,
46
(
2
), pp.
243
266
.
43.
Wu
,
J.-J.
,
2010
, “
The Jump-to-Contact Distance in Atomic Force Microscopy Measurement
,”
J. Adhesion
,
86
(
11
), pp.
1071
1085
.
44.
Greenwood
,
J.
,
2017
, “
Reflections on and Extensions of the Fuller and Tabor Theory of Rough Surface Adhesion
,”
Tribol. Lett.
,
65
, pp.
1
12
.
45.
Shi
,
X.
, and
Polycarpou
,
A. A.
,
2005
, “
Adhesive Transition From Noncontacting to Contacting Elastic Spheres: Extension of the Maugis–Dugdale Model
,”
J. Colloid. Interface. Sci.
,
281
(
2
), pp.
449
457
.
46.
Zheng
,
Z.
, and
Yu
,
J.
,
2007
, “
Using the Dugdale Approximation to Match a Specific Interaction in the Adhesive Contact of Elastic Objects
,”
J. Colloid. Interface. Sci.
,
310
(
1
), pp.
27
34
.
47.
Zhu
,
Y.
,
Zheng
,
Z.
,
Zhang
,
Y.
,
Wu
,
H.
, and
Yu
,
J.
,
2021
, “
Adhesion of Elastic Wavy Surfaces: Interface Strengthening/Weakening and Mode Transition Mechanisms
,”
J. Mech. Phys. Solids.
,
151
, p.
104402
.
48.
Greenwood
,
J.
,
1997
, “
Adhesion of Elastic Spheres
,”
Proc. R. Soc. Lond. Ser. A: Math., Phys. Eng. Sci.
,
453
(
1961
), pp.
1277
1297
.
49.
Wei
,
Z.
,
He
,
M.-F.
, and
Zhao
,
Y.-P.
,
2010
, “
The Effects of Roughness on Adhesion Hysteresis
,”
J. Adhes. Sci. Technol.
,
24
(
6
), pp.
1045
1054
.
50.
Violano
,
G.
,
Chateauminois
,
A.
, and
Afferrante
,
L.
,
2021
, “
Rate-Dependent Adhesion of Viscoelastic Contacts. Part Ii: Numerical Model and Hysteresis Dissipation
,”
Mech. Mater.
,
158
, p.
103884
.
51.
Sanner
,
A.
, and
Pastewka
,
L.
,
2022
, “
Crack-Front Model for Adhesion of Soft Elastic Spheres With Chemical Heterogeneity
,”
J. Mech. Phys. Solids.
,
160
, p.
104781
.
52.
Sanner
,
A.
,
Kumar
,
N.
,
Dhinojwala
,
A.
,
Jacobs
,
T. D.
, and
Pastewka
,
L.
,
2024
, “
Why Soft Contacts Are Stickier When Breaking Than When Making Them
,”
Sci. Adv.
,
10
(
10
), p.
eadl1277
.
53.
Kesari
,
H.
,
Doll
,
J. C.
,
Pruitt
,
B. L.
,
Cai
,
W.
, and
Lew
,
A. J.
,
2010
, “
Role of Surface Roughness in Hysteresis During Adhesive Elastic Contact
,”
Phil. Mag. Phil. Mag. Lett.
,
90
(
12
), pp.
891
902
.
54.
Sun
,
Y.
,
Akhremitchev
,
B.
, and
Walker
,
G. C.
,
2004
, “
Using the Adhesive Interaction Between Atomic Force Microscopy Tips and Polymer Surfaces to Measure the Elastic Modulus of Compliant Samples
,”
Langmuir
,
20
(
14
), pp.
5837
5845
.
You do not currently have access to this content.