Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The present study focuses on the erosion phenomenon caused by particle transport during fluid flow, specifically in complex geometries. A cylindrical geometry is used in conjunction with a conical bore known as “throat.” In-situ focus is performed to target the effects of surface roughness and the rotation of transported particles. The two-phase flow is modeled using the Euler-Lagrange approach. The near-wall turbulence model, K-ω, governs the stochastic flow. The number of particles injected in terms of “number of tries” plays a significant impact not just on the erosion rate, but also on the quality of the numerical resolution. To predict the erosion rate, a user-defined function (UDF) is used to model erosion based on the equations proposed by Mansouri, Zhang, and DNV. Several empirical parameters have been implemented. The obtained results are validated based on Mansouri's experimental work. The findings reveal severe degradation in the drilled conical shape due to the sudden increase in velocity at the inlet of the throat. The erosion rate in the throat geometry increases by 46% compared to the flat plate. The particle rotation is mainly generated by the Magnus-lift force which is caused by the shear flow and velocity gradients. The latter are predominant phenomena close to the wall, where the erosion takes place. Surface erosion decreases proportionally to surface roughness. The rotation of the particles increases the erosion rate by 12%. Combined with surface roughness, particle rotation dominates material removal.

References

1.
U.S. Department of Energy
,
1993
, DOE Fundamentals Handbook Material Science Volume 1 of 2, Washington, FSC-6910, 1, https://www.standards.doe.gov/standards-documents/1000/1017-BHdbk-1993-v1/@@images/file.
2.
Parsi
,
M.
,
Najmi
,
K.
,
Najafifard
,
F.
,
Hassani
,
S.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2014
, “
A Comprehensive Review of Solid Particle Erosion Modeling for Oil and Gas Wells and Pipelines Applications
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
850
873
.
3.
Sandstrom
,
M. J.
,
2023
, “
The Solid Particle Erosion of Tungsten Carbide in Silicon Carbide Slurry
,” MS Thesis,
Department of Mechanical Engineering, University of Utah
,
Salt Lake City, UT
.
4.
Meng
,
H. C.
, and
Ludema
,
K. C.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181–183
, pp.
443
457
.
5.
Chase
,
D. P.
,
Rybicki
,
E. F.
, and
Shadley
,
J. R.
,
1992
, “
A Model for the Effect of Velocity on Erosion of N80 Steel Tubing due to the Normal Impingement of Solid Particles
,”
ASME J. Energy Res. Technol.
,
114
(
1
), pp.
54
64
.
6.
Salik
,
J.
,
Buckley
,
D.
, and
Brainard
,
W. A.
,
1981
, “
The Effect of Mechanical Surface and Heat Treatments on the Erosion Resistance of 6061 Aluminum Alloy
,”
Wear
,
65
(
3
), pp.
351
358
.
7.
Levy
,
A. V.
, and
Chik
,
P.
,
1983
, “
The Effects of Erodent Composition and Shape on the Erosion of Steel
,”
Wear
,
89
(
2
), pp.
151
162
.
8.
Clark
,
H. M. I.
,
1991
, “
On the Impact Rate and Impact Energy of Particles in a Slurry Pot Erosion Tester
,”
Wear
,
147
(
1
), pp.
165
183
.
9.
Sundararajan
,
G.
,
1991
, “
A Comprehensive Model for the Solid Particle Erosion of Ductile Materials
,”
Wear
,
149
(
1–2
), pp.
111
127
.
10.
Arabnejad
,
H.
,
Shirazi
,
S. A.
,
McLaury
,
B. S.
,
Subramani
,
H. J.
, and
Rhyne
,
L. D.
,
2015
, “
The Effect of Erodent Particle Hardness on the Erosion of Stainless Steel
,”
Wear
,
332–333
, pp.
1098
1103
.
11.
Mansouri
,
A.
,
Shirazi
,
S. A.
, and
Mclaury
,
B. S.
,
2014
, “
Experimental and Numerical Investigation of the Effect of Viscosity and Particle Size on the Erosion Damage Caused by Solid Particles
,” Paper No: FEDSM2014-21613, V01DT31A002, pp.
1
10
, .
12.
Karthika
,
S.
,
Amarendra
,
H. J.
,
Rokhade
,
K. K.
, and
Prathap
,
M. S.
,
2022
, “
Experimental and Numerical Approach to Predict Slurry Erosion in Jet Erosion Test rig
,”
Int. J. Refract. Met. Hard Mater.
,
105
, p.
105807
.
13.
Ansys Inc.
,
2022
, ANSYS Fluent Theory Guide, Southpointe. https://vdocument.in/ansys-fluent-theory-guide-568848c30618c.html?page=1.
14.
Ladouceur
,
F.
, and
Poladian
,
L.
,
1996
, “
Surface Roughness and Backscattering
,”
Opt. Lett.
,
21
(
22
), pp.
1833
1835
.
15.
Gasparini
,
R.
,
2020
, How to Model Wall Roughness in CFD?, Computational Fluid Dynamics, https://www.simscale.com/knowledge-base/how-to-model-wall-roughness-in-cfd/.
16.
Foroozesh
,
J.
,
Parvaz
,
F.
,
Hosseini
,
S. H.
,
Ahmadi
,
G.
,
Elsayed
,
K.
, and
Babaoğlu
,
N. U.
,
2021
, “
Computational Fluid Dynamics Study of the Impact of Surface Roughness on Cyclone Performance and Erosion
,”
Powder Technol.
,
389
, pp.
339
354
.
17.
Ansys Inc.
,
2009
, “Ansys Fluent User's Guide”, https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm.
18.
Adams
,
T.
,
Grant
,
C.
, and
Watson
,
H.
,
2012
, “
A Simple Algorithm to Relate Measured Surface Roughness to Equivalent Sand-Grain Roughness
,”
Int. J. Mech. Eng. Mechatron.
,
1
(
1
), pp.
66
71
.
19.
Chochua
,
G. G.
, and
Shirazi
,
S. A.
,
2019
, “
A Combined CFD-Experimental Study of Erosion Wear Life Prediction for Non-Newtonian Viscous Slurries
,”
Wear
,
426–427
(
Part A
), pp.
481
490
.
20.
Finnie
,
I.
,
1972
, “
Some Observations on the Erosion of Ductile Metals
,”
Wear
,
19
(
1
), pp.
81
90
.
21.
Ben-mansour
,
R.
,
Badr
,
H. M.
,
Araoye
,
A. A.
,
Ul
,
I.
,
Toor
,
H.
, and
Toor
,
I. U. H.
,
2021
, “
Computational Analysis of Water-Submerged jet Erosion
,”
Energies
,
14
(
11
), p.
3074
.
22.
Dennis
,
S. C. R.
,
Singh
,
S. N.
, and
Ingham
,
D. B.
,
1980
, “
The Steady Flow due to a Rotating Sphere at Low and Moderate Reynolds Numbers
,”
J. Fluid Mech.
,
101
(
2
), pp.
257
279
.
23.
Michaelides
,
E. E.
,
Sommerfeld
,
M.
, and
van Wachem
,
B.
,
2022
,
Multiphase Flows With Droplets and Particles
, 3rd ed.,
Boca Raton, FL
. .
24.
Tsuji
,
Y.
,
Oshima
,
T.
, and
Morikawa
,
Y.
,
1985
, “
Numerical Simulation of Pneumatic Conveying in a Horizontal Pipe
,”
KONA Powder Part. J.
,
3
(
3
), pp.
38
51
.
25.
Vieira
,
R. E.
,
Mansouri
,
A.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2016
, “
Experimental and Computational Study of Erosion in Elbows due to Sand Particles in Air Flow
,”
Powder Technol.
,
288
, pp.
339
353
.
26.
Ridha
,
R.
,
2020
, “Tribology Finnie, Oka, and Mclaury CFD Erosion Model Rasyid Ridha Mechanical Engineering,” Karadeniz Technical University, https://www.academia.edu/43230831/Finnie_OKA_and_Mclaury_erosion_Model
27.
Darihaki
,
F.
,
Hajidavalloo
,
E.
,
Ghasemzadeh
,
A.
, and
Safian
,
G. A.
,
2017
, “
Erosion Prediction for Slurry Flow in Choke Geometry
,”
Wear
,
372–373
, pp.
42
53
.
28.
Peng
,
W.
, and
Cao
,
X.
,
2016
, “
Numerical Prediction of Erosion Distributions and Solid Particle Trajectories in Elbows for Gas e Solid Flow
,”
J. Nat. Gas Sci. Eng.
,
30
, pp.
455
470
.
29.
Zhang
,
Y.
,
Reuterfors
,
E. P.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2007
, “
Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows
,”
Wear
,
263
(
1–6
), pp.
330
338
.
30.
Messa
,
G. V.
, and
Malavasi
,
S.
,
2018
, “
A CFD-Based Method for Slurry Erosion Prediction
,”
Wear
,
398–399
, pp.
127
145
.
31.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
32.
Lin
,
G.
,
Wan
,
X.
,
Su
,
C. H.
, and
Karniadakis
,
G. E.
,
2007
, “
Stochastic Computational Fluid Mechanics
,”
Comput. Sci. Eng.
,
9
(
2
), pp.
21
29
.
33.
Deng
,
T.
,
Bingley
,
M. S.
, and
Bradley
,
M. S. A.
,
2004
, “
The Influence of Particle Rotation on the Solid Particle Erosion Rate of Metals
,”
Wear
,
256
(
11–12
), pp.
1037
1049
.
34.
Cao
,
B.
,
Jia
,
F.
,
Zeng
,
Y.
,
Han
,
Y.
,
Meng
,
X.
, and
Xiao
,
Y.
,
2017
, “
Effects of Rotation Speed and Rice Sieve Geometry on Turbulent Motion of Particles in a Vertical Rice Mil
,”
Powder Technol.
,
325
, pp.
429
440
.
You do not currently have access to this content.