Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Intermittent motion is a complex process that involves constant speed, deceleration, static stages, and acceleration. Theoretical analysis suggests that shortening the period of intermittent motion can increase the film thickness during static stages, thereby extending the life of the part. Currently, an increasing number of studies are focusing on small oscillatory movements or vibrations. However, the impact of intermittent motion cycles on the film thickness and wear in the contact area still needs to be investigated. Optical interference and acoustic emission (AE) were employed as experimental methods to investigate simple sliding point contact intermittent motion. The lubrication state transition of full film-starvation-wear in the contact area was observed and the experimental results confirmed the correctness of the elastohydrodynamic lubrication (EHL) theoretical analysis. Additionally, the regularity of starvation and AE signal change with time during intermittent motion were summarized. An in-depth analysis of the reasons why intermittent motion with a short period generates less wear was performed. This analysis provides novel ideas to reduce wear of intermittent motion mechanisms. Overall, this research contributes to the understanding of the wear during intermittent motion and provides essential insights for wear reduction in this area.

References

1.
Chang
,
Z.
,
Xu
,
C.
,
Pan
,
T.
,
Wang
,
L.
, and
Zhang
,
X.
,
2009
, “
A General Framework for Geometry Design of Indexing Cam Mechanism
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2079
2084
.
2.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
,
Li
,
B.
, and
Chen
,
D.
,
2016
, “
Synthesis of Indexing Mechanisms With Non-circular Gears
,”
Mech. Mach. Theory
,
105
, pp.
108
128
.
3.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
, and
Chen
,
D.
,
2016
, “
Generation of Noncircular Bevel Gears With Free-Form Tooth Profile and Curvilinear Tooth Lengthwise
,”
ASME J. Mech. Des.
,
138
(
6
), p.
064501
.
4.
Prikhodko
,
A. A.
,
Smelyagin
,
A. I.
, and
Tsybin
,
A. D.
,
2017
, “
Kinematics of Planetary Mechanisms With Intermittent Motion
,”
Procedia Eng.
,
206
, pp.
380
385
.
5.
Yang
,
Y.
,
Wang
,
J.
,
Zhou
,
S.
, and
Huang
,
T.
,
2019
, “
Design of a Novel Coaxial Eccentric Indexing Cam Mechanism
,”
Mech. Mach. Theory
,
132
, pp.
1
12
.
6.
Sperka
,
P.
,
Wang
,
J.
,
Krupka
,
I.
,
Hartl
,
M.
, and
Kaneta
,
M.
,
2014
, “
Occurrence of High Pressure Spike in Unidirectional Start–Stop–Start Point Contacts
,”
ASME J. Tribol.
,
136
(
4
), p.
041503
.
7.
Wang
,
F.
,
2014
,
Study on the EHL Oil Films Under Intermittent Motion
,
Qingdao University of Technology
,
Qingdao
.
8.
Wu
,
D.
,
Wang
,
J.
, and
Kaneta
,
M.
,
2018
, “
Performance of EHL Oil Film in Intermittent Motion
,”
Tribol. Online
,
13
(
4
), pp.
204
211
.
9.
Zhang
,
C.
,
Jiang
,
X.
,
Wang
,
L.
,
Sun
,
T.
, and
Gu
,
L.
,
2018
, “
Effect of Surface Roughness on the Start-Stop Behavior of Air Lubricated Thrust Micro-bearings
,”
Tribol. Int.
,
119
, pp.
436
442
.
10.
Sander
,
D. E.
, and
Allmaier
,
H.
,
2018
, “
Starting and Stopping Behavior of Worn Journal Bearings
,”
Tribol. Int.
,
127
, pp.
478
488
.
11.
Cen
,
H.
, and
Lugt
,
P. M.
,
2021
, “
Effect of Start-Stop Motion on Contact Replenishment in a Grease Lubricated Deep Groove Ball Bearing
,”
Tribol. Int.
,
157
, p.
106882
.
12.
Krupka
,
I.
,
Svoboda
,
P.
, and
Hartl
,
M.
,
2010
, “
Effect of Surface Topography on Mixed Lubrication Film Formation During Start Up Under Rolling/Sliding Conditions
,”
Tribol. Int.
,
43
(
5–6
), pp.
1035
1042
.
13.
Bouyer
,
J.
, and
Fillon
,
M.
,
2011
, “
Experimental Measurement of the Friction Torque on Hydrodynamic Plain Journal Bearings During Start-Up
,”
Tribol. Int.
,
44
(
7–8
), pp.
772
781
.
14.
Gu
,
C.
,
Meng
,
X.
,
Xie
,
Y.
, and
Kong
,
X.
,
2017
, “
Performance of Surface Texturing During Start-Up Under Starved and Mixed Lubrication
,”
ASME J. Tribol.
,
139
(
1
), p.
011702
.
15.
Cui
,
S.
,
Gu
,
L.
,
Wang
,
L.
,
Xu
,
B.
, and
Zhang
,
C.
,
2018
, “
Numerical Analysis on the Dynamic Contact Behavior of Hydrodynamic Journal Bearings During Start-Up
,”
Tribol. Int.
,
121
, pp.
260
268
.
16.
Henry
,
Y.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2018
, “
Experimental Analysis of the Hydrodynamic Effect During Start-Up of Fixed Geometry Thrust Bearings
,”
Tribol. Int.
,
120
, pp.
299
308
.
17.
Xiang
,
G.
, and
Han
,
Y.
,
2020
, “
Study on the Tribo-dynamic Performances of Water-Lubricated Microgroove Bearings During Start-Up
,”
Tribol. Int.
,
151
, p.
106395
.
18.
Xiang
,
G.
,
Han
,
Y.
,
He
,
T.
,
Wang
,
J.
,
Xiao
,
K.
, and
Li
,
J.
,
2020
, “
Transient Tribo-dynamic Model for Journal Bearings During Start-Up Considering 3D Thermal Characteristic
,”
Tribol. Int.
,
144
, p.
106123
.
19.
Liang
,
P.
,
Li
,
X.
,
Guo
,
F.
,
Cao
,
Y.
,
Zhang
,
X.
, and
Jiang
,
F.
,
2022
, “
Influence of Sea Wave Shock on Transient Start-Up Performance of Water-Lubricated Bearing
,”
Tribol. Int.
,
167
, p.
107332
.
20.
Sugimura
,
J.
,
Jones
,
W. R.
, Jr.
, and
Spikes
,
H. A.
,
1998
, “
EHD Film Thickness in Non-steady State Contacts
,”
ASME J. Tribol.
,
120
(
3
), pp.
442
452
.
21.
Ciulli
,
E.
,
2009
, “
Non-steady State Non-conformal Contacts: Friction and Film Thickness Studies
,”
Meccanica
,
44
(
4
), pp.
409
425
.
22.
Li
,
G.
,
Zhang
,
C.
,
Luo
,
J.
,
Liu
,
S.
,
Xie
,
G.
, and
Lu
,
X.
,
2009
, “
Film-Forming Characteristics of Grease in Point Contact Under Swaying Motions
,”
Tribol. Lett.
,
35
(
2
), pp.
57
65
.
23.
Yahiaoui
,
M.
,
Rigaud
,
E.
,
Mazuyer
,
D.
, and
Cayer-Barrioz
,
J.
,
2017
, “
Forced Oscillations Dynamic Tribometer With Real-Time Insights of Lubricated Interfaces
,”
Rev. Sci. Instrum.
,
88
(
3
), p.
035101
.
24.
de la Presilla
,
R.
,
Wandel
,
S.
,
Stammler
,
M.
,
Grebe
,
M.
,
Poll
,
G.
, and
Glavatskih
,
S.
,
2023
, “
Oscillating Rolling Element Bearings: A Review of Tribotesting and Analysis Approaches
,”
Tribol. Int.
,
188
, p.
108805
.
25.
Jackson
,
R. L.
, and
Angadi
,
S.
,
2023
, “
Electrical Contact During a Rolling Vibratory Motion Considering Mixed Lubrication
,”
ASME J. Tribol.
,
145
(
8
), p.
082201
.
26.
Zhang
,
M.
,
Yao
,
M.
,
Wang
,
J.
, and
Wan
,
Y.
,
2023
, “
Point Contact Thermal Mixed Elastohydrodynamic Lubrication Under Short-Period Intermittent Motion
,”
ASME J. Tribol.
,
145
(
8
), p.
082202
.
27.
Liu
,
H. C.
,
Guo
,
F.
,
Guo
,
L.
, and
Wong
,
P. L.
,
2015
, “
A Dichromatic Interference Intensity Modulation Approach to Measurement of Lubricating Film Thickness
,”
Tribol. Lett.
,
58
(
1
), pp.
1
11
.
28.
Liu
,
C. L.
,
Guo
,
F.
,
Li
,
X. M.
,
Li
,
S. Y.
,
Han
,
S. L.
, and
Wan
,
Y.
,
2018
, “
Experimental Study of Elastohydrodynamic Lubrication Behaviour Under Single Oil Droplet Supply
,”
Tribol. Int.
,
118
, pp.
432
440
.
29.
Liu
,
C. L.
,
Guo
,
F.
, and
Wong
,
P. L.
,
2019
, “
Characterisation of Starved Hydrodynamic Lubricating Films
,”
Tribol. Int.
,
131
, pp.
694
701
.
30.
Liu
,
C. L.
,
Guo
,
F.
,
Wong
,
P. L.
, and
Li
,
X. M.
,
2020
, “
Tribological Behaviour of Surfaces With Stepped Wettability Under Limited Lubricant Supply
,”
Tribol. Int.
,
141
, p.
105880
.
31.
Han
,
Y.
,
Wang
,
J.
,
Li
,
W.
,
Ma
,
R.
, and
Jin
,
X.
,
2019
, “
Oil Film Variation and Surface Damage in the Process of Reciprocation-Oscillation Transformation
,”
Tribol. Int.
,
140
, p.
105828
.
32.
Han
,
Y.
,
Wang
,
J.
,
Wang
,
S.
,
Zou
,
Q.
, and
Barber
,
G.
,
2020
, “
Response of Grease Film at Low Speeds Under Pure Rolling Reciprocating Motion
,”
Friction
,
8
(
1
), pp.
115
135
.
33.
Han
,
Y.
,
Wang
,
J.
,
Jin
,
X.
,
Wang
,
S.
, and
Zhang
,
R.
,
2021
, “
Effects of Slide-to-Roll Ratio and Varying Velocity on the Lubrication Performance of Grease at Low Speed
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
10
), pp.
2122
2136
.
34.
Han
,
Y.
,
Wang
,
J.
,
Li
,
W.
,
Li
,
H.
, and
Pu
,
J.
,
2023
, “
Evolution of Grease Lubrication Regimes and Surface Damage During Reciprocation-Oscillation Transformation
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
237
(
2
), pp.
248
267
.
35.
Li
,
X.
,
Guo
,
F.
,
Poll
,
G.
,
Fei
,
Y.
, and
Yang
,
P.
,
2021
, “
Grease Film Evolution in Rolling Elastohydrodynamic Lubrication Contacts
,”
Friction
,
9
(
1
), pp.
179
190
.
36.
Hosseini
,
S. M.
,
Azadi
,
M.
,
Ghasemi-Ghalebahman
,
A.
, and
Jafari
,
S. M.
,
2023
, “
Fatigue Crack Initiation Detection in Ductile Cast Iron Crankshaft Under Rotating Bending Fatigue Test Using the Acoustic Emission Entropy Method
,”
Eng. Fail. Anal.
,
144
, p.
106981
.
37.
Baensch
,
F.
,
Baer
,
W.
,
Wossidlo
,
P.
, and
Habib
,
A. K.
,
2023
, “
Damage Evolution Detection in a Pipeline Segment Under Bending by Means of Acoustic Emission
,”
Int. J. Press. Vessels Pip.
,
201
, p.
104863
.
38.
Soundararajan
,
C. K.
,
Myhre
,
A.
,
Sendrowicz
,
A.
,
Lu
,
X.
, and
Vinogradov
,
A.
,
2023
, “
Hydrogen-Induced Degradation Behavior of Nickel Alloy Studied Using Acoustic Emission Technique
,”
Mat. Sci. Eng. A
,
865
(
16
), p.
144635
.
39.
Dahmene
,
F.
,
Yaacoubi
,
S.
,
El Mountassir
,
M.
,
Porot
,
G.
,
Masmoudi
,
M.
,
Nennig
,
P.
,
Suhuddin
,
U. F. H.
, and
Dos Santos
,
J. F.
,
2022
, “
Dataset From Healthy and Defective Spot Welds in Refill Friction Stir Spot Welding Using Acoustic Emission
,”
Data Br.
,
45
, p.
108750
.
40.
Caso
,
E.
,
Fernandez-del-Rincon
,
A.
,
Garcia
,
P.
,
Diez-Ibarbia
,
A.
, and
Sanchez-Espiga
,
J.
,
2023
, “
An Experimental Study of Acoustic Emissions From Active Surface Degradation in Planetary Gears
,”
Mech. Syst. Signal Process.
,
189
, p.
110090
.
41.
Al-Dossary
,
S.
,
Hamzah
,
R. R.
, and
Mba
,
D.
,
2009
, “
Observations of Changes in Acoustic Emission Waveform for Varying Seeded Defect Sizes in a Rolling Element Bearing
,”
Appl. Acoust.
,
70
(
1
), pp.
58
81
.
42.
Ohta
,
H.
,
Nakajima
,
Y.
,
Kato
,
S.
, and
Tajimi
,
H.
,
2013
, “
Vibration and Acoustic Emission Measurements Evaluating the Separation of the Balls and Raceways With Lubricating Film in a Linear Bearing Under Grease Lubrication
,”
ASME J. Tribol.
,
135
(
4
), p.
041104
.
43.
Tian
,
P.
,
Tian
,
Y.
,
Shan
,
L.
,
Meng
,
Y.
, and
Zhang
,
X.
,
2015
, “
A Correlation Analysis Method for Analyzing Tribological States Using Acoustic Emission, Frictional Coefficient, and Contact Resistance Signals
,”
Friction
,
3
, pp.
36
46
.
44.
Geng
,
Z.
,
Puhan
,
D.
, and
Reddyhoff
,
T.
,
2019
, “
Using Acoustic Emission to Characterize Friction and Wear in Dry Sliding Steel Contacts
,”
Tribol. Int.
,
134
, pp.
394
407
.
45.
Reddyhoff
,
T.
,
Schmidt
,
A.
, and
Spikes
,
H.
,
2019
, “
Thermal Conductivity and Flash Temperature
,”
Tribol. Lett.
,
67
, p.
22
.
46.
Habchi
,
W.
, and
Bair
,
S.
,
2020
, “
The Role of the Thermal Conductivity of Steel in Quantitative Elastohydrodynamic Friction
,”
Tribol. Int.
,
142
, p.
105970
.
47.
Liu
,
H. C.
,
Zhang
,
B. B.
,
Bader
,
N.
,
Poll
,
G.
, and
Venner
,
C. H.
,
2020
, “
Influences of Solid and Lubricant Thermal Conductivity on Traction in an EHL Circular Contact
,”
Tribol. Int.
,
146
, p.
106059
.
48.
SL-SF02A
,
2017
, Rapid Automatic Motion Viscometer, Hunan Sheli Electron Science & Technology Co, Ltd., http://www.hnsheli.cn/Products-20035030.html.
49.
Yang
,
P. R.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
50.
Hu
,
Y.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
51.
Yang
,
P. R.
,
1998
,
Numerical Analysis of Fluid Lubrication
,
National Defense Industry Press
,
Beijing
.
52.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier
,
New York
.
53.
PSM 1000
,
2016
, Optical microscope. Motic, https://www.motic.com/As_Industrial_PSM_PSM100/product_310.html
54.
Wen
,
S. Z.
,
Huang
,
P.
,
Tian
,
Y.
, and
Ma
,
L. R.
,
2018
,
Principles of Tribology
, 5th ed.,
Tsinghua University Press
,
Beijing, China
.
You do not currently have access to this content.