Abstract
The study investigated the propagation characteristics of surface-initiated cracks in slewing bearing steel and analyzed the influence of initial crack length and orientation on crack propagation. A cohesive zone model incorporating continuum damage mechanics was established to simulate crack propagation under rolling contact cyclic loading. Rolling wear and contact fatigue tests were conducted using a rolling contact fatigue test machine to analyze crack propagation under different load cycle numbers. By comparing simulation results with experimental outcomes, the effectiveness of the theoretical analysis was validated.
Issue Section:
Rolling Element Bearings
References
1.
Harris
, T. A.
, and Yu
, W. K.
, 1999
, “Lundberg-Palmgren Fatigue Theory: Considerations of Failure Stress and Stressed Volume
,” ASME J. Tribol.
, 121
(1
), pp. 85
–89
. 2.
Sadeghi
, F.
, Jalalahmadi
, B.
, Slack
, T. S.
, Raje
, N.
, and Arakere
, N. K.
, 2009
, “A Review of Rolling Contact Fatigue
,” ASME J. Tribol.
, 131
(4
), p. 041403
. 3.
Singh
, A.
, 2000
, “An Experimental Investigation of Bending Fatigue Initiation and Propagation Lives
,” ASME J. Mech. Des.
, 123
(3
), pp. 431
–435
. 4.
Irwin
, G. R.
, 1957
, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,” ASME J. Appl. Mech.
, 24
(3
), pp. 361
–364
. 5.
Paris
, P.
, 1961
, “A Rational Analytical Theory of Fatigue
,” Trends Eng.
, 13
, pp. 9
–14
.6.
Guan
, J.
, Wang
, L.
, Zhang
, C.
, and Ma
, X.
, 2017
, “Effects of Non-metallic Inclusions on the Crack Propagation in Bearing Steel
,” Tribol. Int.
, 106
, pp. 123
–131
. 7.
Mobasher Moghaddam
, S.
, Sadeghi
, F.
, Weinzapfel
, N.
, and Liebel
, A.
, 2014
, “A Damage Mechanics Approach to Simulate Butterfly Wing Formation Around Nonmetallic Inclusions
,” ASME J. Tribol.
, 137
(1
), p. 011404
. 8.
Mobasher Moghaddam
, S.
, Sadeghi
, F.
, Paulson
, K.
, Weinzapfel
, N.
, Correns
, M.
, Bakolas
, V.
, and Dinkel
, M.
, 2015
, “Effect of Non-metallic Inclusions on Butterfly Wing Initiation, Crack Formation, and Spall Geometry in Bearing Steels
,” Int. J. Fatigue
, 80
, pp. 203
–215
. 9.
Paulson
, N. R.
, Evans
, N. E.
, Bomidi
, J. A. R.
, Sadeghi
, F.
, Evans
, R. D.
, and Mistry
, K. K.
, 2015
, “A Finite Element Model for Rolling Contact Fatigue of Refurbished Bearings
,” Tribol. Int.
, 85
, pp. 1
–9
. 10.
Paulson
, N. R.
, Golmohammadi
, Z.
, Walvekar
, A. A.
, Sadeghi
, F.
, and Mistry
, K.
, 2017
, “Rolling Contact Fatigue in Refurbished Case Carburized Bearings
,” Tribol. Int.
, 115
, pp. 348
–364
. 11.
Golmohammadi
, Z.
, Sadeghi
, F.
, Walvekar
, A.
, Saei
, M.
, Mistry
, K. K.
, and Kang
, Y. S.
, 2017
, “Experimental and Analytical Investigation of Effects of Refurbishing on Rolling Contact Fatigue
,” Wear
, 392–393
, pp. 190
–201
. 12.
Guo
, W.
, Ma
, T.
, Cao
, H.
, Zi
, Y.
, and Wei
, X.
, 2022
, “Numerical Analysis of Rolling Contact Fatigue Crack Initiation Considering Material Microstructure
,” Eng. Fail. Anal.
, 138
, p. 106394
. 13.
Ooi
, G. T. C.
, Roy
, S.
, and Sundararajan
, S.
, 2018
, “Investigating the Effect of Retained Austenite and Residual Stress on Rolling Contact Fatigue of Carburized Steel With XFEM and Experimental Approaches
,” Mater. Sci. Eng. A
, 732
, pp. 311
–319
. 14.
Zhang
, J.
, Yang
, C.
, and Zhang
, L.
, 2023
, “Mesoscopic Dynamic Characteristics and RCF Damage Evolution of High-Speed Transmission Gear in Wind Turbine
,” Int. J. Fatigue
, 168
, p. 107427
. 15.
Deng
, S.
, Hua
, L.
, Han
, X.
, Wei
, W.
, and Huang
, S.
, 2015
, “Analysis of Surface Crack Growth Under Rolling Contact Fatigue in a Linear Contact
,” Tribol. Trans.
, 58
(3
), pp. 432
–443
. 16.
Göncza
, P.
, Potočnik
, R.
, and Glodež
, S.
, 2010
, “Fatigue Behaviour of 42CrMo4 Steel Under Contact Loading
,” Procedia Eng.
, 2
(1
), pp. 1991
–1999
. 17.
Glodež
, S.
, Potočnik
, R.
, Flašker
, J.
, and Zafošnik
, B.
, 2008
, “Numerical Modelling of Crack Path in the Lubricated Rolling–Sliding Contact Problems
,” Eng. Fract. Mech.
, 75
(3–4
), pp. 880
–891
. 18.
Hannes
, D.
, and Alfredsson
, B.
, 2011
, “Rolling Contact Fatigue Crack Growth Prediction by the Asperity Point Load Mechanism
,” Key Eng. Mater.
, 488–489
, pp. 101
–104
. 19.
He
, H.
, Liu
, H.
, Zhu
, C.
, and Mura
, A.
, 2021
, “Numerical Study on Fatigue Crack Propagation Behaviors in Lubricated Rolling Contact
,” Chin. J. Aeronaut.
, 34
(9
), pp. 24
–36
. 20.
Fourel
, L.
, Noyel
, J.-P.
, Bossy
, E.
, Kleber
, X.
, Sainsot
, P.
, and Ville
, F.
, 2021
, “Towards a Grain-Scale Modeling of Crack Initiation in Rolling Contact Fatigue—Part 1: Shear Stress Considerations
,” Tribol. Int.
, 164
, p. 107224
. 21.
Fletcher
, D. I.
, Corteen
, J.
, and Wilby
, A.
, 2024
, “Rough Surface Rolling Contact Fatigue Crack Stress Intensity Factor Calculation for Modern Rail Steels
,” Wear
, 540–541
, p. 205231
. 22.
Huang
, Y. B.
, Shi
, L. B.
, Zhao
, X. J.
, Cai
, Z. B.
, Liu
, Q. Y.
, and Wang
, W. J.
, 2018
, “On the Formation and Damage Mechanism of Rolling Contact Fatigue Surface Cracks of Wheel/Rail Under the Dry Condition
,” Wear
, 400–401
, pp. 62
–73
. 23.
Ren
, Z.
, Li
, B.
, and Zhou
, Q.
, 2022
, “Rolling Contact Fatigue Crack Propagation on Contact Surface and Subsurface in Mixed Mode I+II+III Fracture
,” Wear
, 506–507
, p. 204459
. 24.
Keer
, L. M.
, and Bryant
, M. D.
, 1983
, “A Pitting Model for Rolling Contact Fatigue
,” ASME. J. Lubr. Technol.
, 105
(2
), pp. 198
–205
. 25.
Singh
, K.
, Sadeghi
, F.
, Peterson
, W.
, Lorenz
, S. J.
, Villarreal
, J.
, and Jinmon
, T.
, 2022
, “A CFD-FEM Based Partitioned Fluid Structure Interaction Model to Investigate Surface Cracks in Elastohydrodynamic Lubricated Line Contacts
,” Tribol. Int.
, 171
, p. 107532
. 26.
Moës
, N.
, Dolbow
, J.
, and Belytschko
, T.
, 1999
, “A Finite Element Method for Crack Growth Without Remeshing
,” Int. J. Numer. Methods Eng.
, 46
(1
), pp. 131
–150
. 27.
Hua
, L.
, Deng
, S.
, Han
, X.
, and Huang
, S.
, 2013
, “Effect of Material Defects on Crack Initiation Under Rolling Contact Fatigue in a Bearing Ring
,” Tribol. Int.
, 66
, pp. 315
–323
. 28.
Harris
, T. A.
, and Kotzalas
, M. N.
, 2001
, Rolling Bearing Analysis
, CRC Press
, Boca Raton, FL
.29.
Harris
, T.
, Rumbarger
, J. H.
, and Butterfield
, C. P.
, 2009
, “Wind Turbine Design Guideline DG03: Yaw and Pitch Rolling Bearing Life.”30.
Bower
, A. F.
, 1988
, “The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks
,” ASME J. Tribol.
, 110
(4
), pp. 704
–711
. 31.
Dallago
, M.
, Benedetti
, M.
, Ancellotti
, S.
, and Fontanari
, V.
, 2016
, “The Role of Lubricating Fluid Pressurization and Entrapment on the Path of Inclined Edge Cracks Originated Under Rolling–Sliding Contact Fatigue: Numerical Analyses vs. Experimental Evidences
,” Int. J. Fatigue
, 92
, pp. 517
–530
. 32.
Ancellotti
, S.
, Benedetti
, M.
, Dallago
, M.
, and Fontanari
, V.
, 2017
, “The Role of the Second Body on the Pressurization and Entrapment of Oil in Cracks Produced Under Lubricated Rolling-Sliding Contact Fatigue
,” Theor. Appl. Fract. Mech.
, 91
, pp. 3
–16
. 33.
Fang
, X.-Y.
, Zhang
, H.-N.
, and Ma
, D.-W.
, 2022
, “Influence of Initial Crack on Fatigue Crack Propagation With Mixed Mode in U71Mn Rail Subsurface
,” Eng. Fail. Anal.
, 136
, p. 106220
. 34.
Vijay
, A.
, and Sadeghi
, F.
, 2022
, “A Crystal Plasticity and Cohesive Element Model for Rolling Contact Fatigue of Bearing Steels
,” Tribol. Int.
, 173
, p. 107607
. 35.
Vijay
, A.
, and Sadeghi
, F.
, 2019
, “A Continuum Damage Mechanics Framework for Modeling the Effect of Crystalline Anisotropy on Rolling Contact Fatigue
,” Tribol. Int.
, 140
, p. 105845
. 36.
Lorenz
, S. J.
, Sadeghi
, F.
, Trivedi
, H. K.
, Rosado
, L.
, Kirsch
, M. S.
, and Wang
, C.
, 2021
, “A Continuum Damage Mechanics Finite Element Model for Investigating Effects of Surface Roughness on Rolling Contact Fatigue
,” Int. J. Fatigue
, 143
, p. 105986
. 37.
Lemaitre
, J.
, 1996
, A Course on Damage Mechanics.
, Springer
, Berlin/Heidelberg
.38.
Li
, W.
, Tang
, H.
, Meng
, X.
, Shu
, K.
, Wang
, T.
, Gu
, L.
, Wang
, L.
, and Zhang
, C.
, 2023
, “Effects of Surface Defects on Rolling Contact Fatigue of M50 Steel With Consideration to Both the Transgranular and Intergranular Damage
,” Tribol. Int.
, 188
, p. 108775
. 39.
Dang
, H.
, Liang
, A.
, Feng
, R.
, Zhang
, J.
, Shao
, Y.
, and Yam
, M. C. H.
, 2022
, “Experiments on Static and Fatigue Behaviour of Corroded Q235B and 42CrMo Steels
,” J. Constr. Steel Res.
, 198
, p. 107535
. 40.
Lewis
, R.
, Magel
, E.
, Wang
, W.-J.
, Olofsson
, U.
, Lewis
, S.
, Slatter
, T.
, and Beagles
, A.
, 2017
, “Towards a Standard Approach for the Wear Testing of Wheel and Rail Materials
,” Proc. Inst. Mech. Eng. F J. Rail Rapid Transit
, 231
(7
), pp. 760
–774
. 41.
Chen
, Y.
, Jin
, X.
, Yue
, Y.
, Wang
, S.
, Han
, H.
, Wen
, M.
, Wang
, Q.
, and Cheng
, P.
, 2023
, “Investigation on 3D Fatigue Crack Propagation in Pitch Bearing Raceway of Offshore Wind Turbines
,” Ocean Eng.
, 269
, p. 113524
. 42.
Rycerz
, P.
, Olver
, A.
, and Kadiric
, A.
, 2017
, “Propagation of Surface Initiated Rolling Contact Fatigue Cracks in Bearing Steel
,” Int. J. Fatigue
, 97
, pp. 29
–38
. Copyright © 2024 by ASME
You do not currently have access to this content.