Abstract

The study investigated the propagation characteristics of surface-initiated cracks in slewing bearing steel and analyzed the influence of initial crack length and orientation on crack propagation. A cohesive zone model incorporating continuum damage mechanics was established to simulate crack propagation under rolling contact cyclic loading. Rolling wear and contact fatigue tests were conducted using a rolling contact fatigue test machine to analyze crack propagation under different load cycle numbers. By comparing simulation results with experimental outcomes, the effectiveness of the theoretical analysis was validated.

References

1.
Harris
,
T. A.
, and
Yu
,
W. K.
,
1999
, “
Lundberg-Palmgren Fatigue Theory: Considerations of Failure Stress and Stressed Volume
,”
ASME J. Tribol.
,
121
(
1
), pp.
85
89
.
2.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
3.
Singh
,
A.
,
2000
, “
An Experimental Investigation of Bending Fatigue Initiation and Propagation Lives
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
431
435
.
4.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
(
3
), pp.
361
364
.
5.
Paris
,
P.
,
1961
, “
A Rational Analytical Theory of Fatigue
,”
Trends Eng.
,
13
, pp.
9
14
.
6.
Guan
,
J.
,
Wang
,
L.
,
Zhang
,
C.
, and
Ma
,
X.
,
2017
, “
Effects of Non-metallic Inclusions on the Crack Propagation in Bearing Steel
,”
Tribol. Int.
,
106
, pp.
123
131
.
7.
Mobasher Moghaddam
,
S.
,
Sadeghi
,
F.
,
Weinzapfel
,
N.
, and
Liebel
,
A.
,
2014
, “
A Damage Mechanics Approach to Simulate Butterfly Wing Formation Around Nonmetallic Inclusions
,”
ASME J. Tribol.
,
137
(
1
), p.
011404
.
8.
Mobasher Moghaddam
,
S.
,
Sadeghi
,
F.
,
Paulson
,
K.
,
Weinzapfel
,
N.
,
Correns
,
M.
,
Bakolas
,
V.
, and
Dinkel
,
M.
,
2015
, “
Effect of Non-metallic Inclusions on Butterfly Wing Initiation, Crack Formation, and Spall Geometry in Bearing Steels
,”
Int. J. Fatigue
,
80
, pp.
203
215
.
9.
Paulson
,
N. R.
,
Evans
,
N. E.
,
Bomidi
,
J. A. R.
,
Sadeghi
,
F.
,
Evans
,
R. D.
, and
Mistry
,
K. K.
,
2015
, “
A Finite Element Model for Rolling Contact Fatigue of Refurbished Bearings
,”
Tribol. Int.
,
85
, pp.
1
9
.
10.
Paulson
,
N. R.
,
Golmohammadi
,
Z.
,
Walvekar
,
A. A.
,
Sadeghi
,
F.
, and
Mistry
,
K.
,
2017
, “
Rolling Contact Fatigue in Refurbished Case Carburized Bearings
,”
Tribol. Int.
,
115
, pp.
348
364
.
11.
Golmohammadi
,
Z.
,
Sadeghi
,
F.
,
Walvekar
,
A.
,
Saei
,
M.
,
Mistry
,
K. K.
, and
Kang
,
Y. S.
,
2017
, “
Experimental and Analytical Investigation of Effects of Refurbishing on Rolling Contact Fatigue
,”
Wear
,
392–393
, pp.
190
201
.
12.
Guo
,
W.
,
Ma
,
T.
,
Cao
,
H.
,
Zi
,
Y.
, and
Wei
,
X.
,
2022
, “
Numerical Analysis of Rolling Contact Fatigue Crack Initiation Considering Material Microstructure
,”
Eng. Fail. Anal.
,
138
, p.
106394
.
13.
Ooi
,
G. T. C.
,
Roy
,
S.
, and
Sundararajan
,
S.
,
2018
, “
Investigating the Effect of Retained Austenite and Residual Stress on Rolling Contact Fatigue of Carburized Steel With XFEM and Experimental Approaches
,”
Mater. Sci. Eng. A
,
732
, pp.
311
319
.
14.
Zhang
,
J.
,
Yang
,
C.
, and
Zhang
,
L.
,
2023
, “
Mesoscopic Dynamic Characteristics and RCF Damage Evolution of High-Speed Transmission Gear in Wind Turbine
,”
Int. J. Fatigue
,
168
, p.
107427
.
15.
Deng
,
S.
,
Hua
,
L.
,
Han
,
X.
,
Wei
,
W.
, and
Huang
,
S.
,
2015
, “
Analysis of Surface Crack Growth Under Rolling Contact Fatigue in a Linear Contact
,”
Tribol. Trans.
,
58
(
3
), pp.
432
443
.
16.
Göncza
,
P.
,
Potočnik
,
R.
, and
Glodež
,
S.
,
2010
, “
Fatigue Behaviour of 42CrMo4 Steel Under Contact Loading
,”
Procedia Eng.
,
2
(
1
), pp.
1991
1999
.
17.
Glodež
,
S.
,
Potočnik
,
R.
,
Flašker
,
J.
, and
Zafošnik
,
B.
,
2008
, “
Numerical Modelling of Crack Path in the Lubricated Rolling–Sliding Contact Problems
,”
Eng. Fract. Mech.
,
75
(
3–4
), pp.
880
891
.
18.
Hannes
,
D.
, and
Alfredsson
,
B.
,
2011
, “
Rolling Contact Fatigue Crack Growth Prediction by the Asperity Point Load Mechanism
,”
Key Eng. Mater.
,
488–489
, pp.
101
104
.
19.
He
,
H.
,
Liu
,
H.
,
Zhu
,
C.
, and
Mura
,
A.
,
2021
, “
Numerical Study on Fatigue Crack Propagation Behaviors in Lubricated Rolling Contact
,”
Chin. J. Aeronaut.
,
34
(
9
), pp.
24
36
.
20.
Fourel
,
L.
,
Noyel
,
J.-P.
,
Bossy
,
E.
,
Kleber
,
X.
,
Sainsot
,
P.
, and
Ville
,
F.
,
2021
, “
Towards a Grain-Scale Modeling of Crack Initiation in Rolling Contact Fatigue—Part 1: Shear Stress Considerations
,”
Tribol. Int.
,
164
, p.
107224
.
21.
Fletcher
,
D. I.
,
Corteen
,
J.
, and
Wilby
,
A.
,
2024
, “
Rough Surface Rolling Contact Fatigue Crack Stress Intensity Factor Calculation for Modern Rail Steels
,”
Wear
,
540–541
, p.
205231
.
22.
Huang
,
Y. B.
,
Shi
,
L. B.
,
Zhao
,
X. J.
,
Cai
,
Z. B.
,
Liu
,
Q. Y.
, and
Wang
,
W. J.
,
2018
, “
On the Formation and Damage Mechanism of Rolling Contact Fatigue Surface Cracks of Wheel/Rail Under the Dry Condition
,”
Wear
,
400–401
, pp.
62
73
.
23.
Ren
,
Z.
,
Li
,
B.
, and
Zhou
,
Q.
,
2022
, “
Rolling Contact Fatigue Crack Propagation on Contact Surface and Subsurface in Mixed Mode I+II+III Fracture
,”
Wear
,
506–507
, p.
204459
.
24.
Keer
,
L. M.
, and
Bryant
,
M. D.
,
1983
, “
A Pitting Model for Rolling Contact Fatigue
,”
ASME. J. Lubr. Technol.
,
105
(
2
), pp.
198
205
.
25.
Singh
,
K.
,
Sadeghi
,
F.
,
Peterson
,
W.
,
Lorenz
,
S. J.
,
Villarreal
,
J.
, and
Jinmon
,
T.
,
2022
, “
A CFD-FEM Based Partitioned Fluid Structure Interaction Model to Investigate Surface Cracks in Elastohydrodynamic Lubricated Line Contacts
,”
Tribol. Int.
,
171
, p.
107532
.
26.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
27.
Hua
,
L.
,
Deng
,
S.
,
Han
,
X.
, and
Huang
,
S.
,
2013
, “
Effect of Material Defects on Crack Initiation Under Rolling Contact Fatigue in a Bearing Ring
,”
Tribol. Int.
,
66
, pp.
315
323
.
28.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2001
,
Rolling Bearing Analysis
,
CRC Press
,
Boca Raton, FL
.
29.
Harris
,
T.
,
Rumbarger
,
J. H.
, and
Butterfield
,
C. P.
,
2009
, “Wind Turbine Design Guideline DG03: Yaw and Pitch Rolling Bearing Life.”
30.
Bower
,
A. F.
,
1988
, “
The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks
,”
ASME J. Tribol.
,
110
(
4
), pp.
704
711
.
31.
Dallago
,
M.
,
Benedetti
,
M.
,
Ancellotti
,
S.
, and
Fontanari
,
V.
,
2016
, “
The Role of Lubricating Fluid Pressurization and Entrapment on the Path of Inclined Edge Cracks Originated Under Rolling–Sliding Contact Fatigue: Numerical Analyses vs. Experimental Evidences
,”
Int. J. Fatigue
,
92
, pp.
517
530
.
32.
Ancellotti
,
S.
,
Benedetti
,
M.
,
Dallago
,
M.
, and
Fontanari
,
V.
,
2017
, “
The Role of the Second Body on the Pressurization and Entrapment of Oil in Cracks Produced Under Lubricated Rolling-Sliding Contact Fatigue
,”
Theor. Appl. Fract. Mech.
,
91
, pp.
3
16
.
33.
Fang
,
X.-Y.
,
Zhang
,
H.-N.
, and
Ma
,
D.-W.
,
2022
, “
Influence of Initial Crack on Fatigue Crack Propagation With Mixed Mode in U71Mn Rail Subsurface
,”
Eng. Fail. Anal.
,
136
, p.
106220
.
34.
Vijay
,
A.
, and
Sadeghi
,
F.
,
2022
, “
A Crystal Plasticity and Cohesive Element Model for Rolling Contact Fatigue of Bearing Steels
,”
Tribol. Int.
,
173
, p.
107607
.
35.
Vijay
,
A.
, and
Sadeghi
,
F.
,
2019
, “
A Continuum Damage Mechanics Framework for Modeling the Effect of Crystalline Anisotropy on Rolling Contact Fatigue
,”
Tribol. Int.
,
140
, p.
105845
.
36.
Lorenz
,
S. J.
,
Sadeghi
,
F.
,
Trivedi
,
H. K.
,
Rosado
,
L.
,
Kirsch
,
M. S.
, and
Wang
,
C.
,
2021
, “
A Continuum Damage Mechanics Finite Element Model for Investigating Effects of Surface Roughness on Rolling Contact Fatigue
,”
Int. J. Fatigue
,
143
, p.
105986
.
37.
Lemaitre
,
J.
,
1996
,
A Course on Damage Mechanics.
,
Springer
,
Berlin/Heidelberg
.
38.
Li
,
W.
,
Tang
,
H.
,
Meng
,
X.
,
Shu
,
K.
,
Wang
,
T.
,
Gu
,
L.
,
Wang
,
L.
, and
Zhang
,
C.
,
2023
, “
Effects of Surface Defects on Rolling Contact Fatigue of M50 Steel With Consideration to Both the Transgranular and Intergranular Damage
,”
Tribol. Int.
,
188
, p.
108775
.
39.
Dang
,
H.
,
Liang
,
A.
,
Feng
,
R.
,
Zhang
,
J.
,
Shao
,
Y.
, and
Yam
,
M. C. H.
,
2022
, “
Experiments on Static and Fatigue Behaviour of Corroded Q235B and 42CrMo Steels
,”
J. Constr. Steel Res.
,
198
, p.
107535
.
40.
Lewis
,
R.
,
Magel
,
E.
,
Wang
,
W.-J.
,
Olofsson
,
U.
,
Lewis
,
S.
,
Slatter
,
T.
, and
Beagles
,
A.
,
2017
, “
Towards a Standard Approach for the Wear Testing of Wheel and Rail Materials
,”
Proc. Inst. Mech. Eng. F J. Rail Rapid Transit
,
231
(
7
), pp.
760
774
.
41.
Chen
,
Y.
,
Jin
,
X.
,
Yue
,
Y.
,
Wang
,
S.
,
Han
,
H.
,
Wen
,
M.
,
Wang
,
Q.
, and
Cheng
,
P.
,
2023
, “
Investigation on 3D Fatigue Crack Propagation in Pitch Bearing Raceway of Offshore Wind Turbines
,”
Ocean Eng.
,
269
, p.
113524
.
42.
Rycerz
,
P.
,
Olver
,
A.
, and
Kadiric
,
A.
,
2017
, “
Propagation of Surface Initiated Rolling Contact Fatigue Cracks in Bearing Steel
,”
Int. J. Fatigue
,
97
, pp.
29
38
.
You do not currently have access to this content.