Abstract

Seventeen years have passed since the first full elastohydrodynamic lubrication (EHL) simulation employed the real pressure and shear dependence of viscosity measured in viscometers to accurately predict film thickness and friction. This is the appropriate time to enumerate the advances in understanding brought on by the application of high-pressure rheology to the EHL problem. The pressure dependence of the low-shear viscosity, which has been measured in viscometers for nearly a century, differs from the narratives taught to tribology students and often used to justify inaccurate models. The central film thickness often depends on the shear-thinning at low pressure and time–temperature–pressure superposition demands that the same shear dependence be active at the high pressure where friction is generated. In this article, some of the revelations resulting from quantitative EHL are reviewed. For example, it has been discovered that the minimum film thickness in point contacts depends upon the viscosity at the highest pressures of the contact. This explains the errors in the classical formulas, which were based upon the fictional narratives concerning piezoviscous response, and the assumption of film thickness governed by inlet conditions. Quantitative EHL provides quantitative predictions of contact behavior.

References

1.
Bridgman
,
P. W.
,
1926
, “
The Effect of Pressure on the Viscosity of Forty-Three Pure Liquids
,”
Proc. Am. Acad. Arts Sci.
,
61
(
3
), pp.
57
99
.
2.
Drozd-Rzoska
,
A.
,
Rzoska
,
S. J.
,
Roland
,
C. M.
, and
Imre
,
A. R.
,
2008
, “
On the Pressure Evolution of Dynamic Properties of Supercooled Liquids
,”
J. Phys.: Condens. Matter
,
20
(
24
), p.
244103
.
3.
Bair
,
S.
,
2022
, “
The Unresolved Definition of the Pressure-Viscosity Coefficient
,”
Sci. Rep.
,
12
(
1
), p.
3422
.
4.
Bair
,
S.
,
2015
, “
A Critical Evaluation of Film Thickness-Derived Pressure–Viscosity Coefficients
,”
Lubr. Sci.
,
27
(
6
), pp.
337
346
.
5.
Bair
,
S.
,
Vergne
,
P.
, and
Marchetti
,
M.
,
2002
, “
The Effect of Shear-Thinning on Film Thickness for Space Lubricants
,”
Tribol. Trans.
,
45
(
3
), pp.
330
333
.
6.
Habchi
,
W.
, and
Bair
,
S.
,
2013
, “
Quantitative Compressibility Effects in Thermal Elastohydrodynamic Circular Contacts
,”
ASME J. Tribol.
,
135
(
1
), p.
011502
.
7.
Szeri
,
A. Z.
,
2010
,
Fluid Film Lubrication
,
Cambridge University Press
,
Cambridge
.
8.
Barus
,
C.
,
1893
, “
Isothermals, Isopiestics and Isometrics Relative to Viscosity
,”
Am. J. Sci. (1880–1910)
,
45
(
266
), pp.
87
96
.
9.
Roelands
,
C. J. A.
,
1966
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,”
Ph.D. thesis
,
Technische Hogeschool Delft
,
The Netherlands
.
10.
American Society of Mechanical Engineers. Research Committee on Lubrication
,
1953
,
Viscosity and Density of Over 40 Lubricating Fluids of Known Composition at Pressures to 150,000 Psi and Temperatures to 425 F
,
American Society of Mechanical Engineers
,
NY, New York
.
11.
Thoms
,
E.
,
Kołodziej
,
S.
,
Wikarek
,
M.
,
Klotz
,
S.
,
Pawlus
,
S.
, and
Paluch
,
M.
,
2018
, “
Inflection Point in the Debye Relaxation Time of 2-Butyl-1-Octanol
,”
J. Chem. Phys.
,
149
(
21
), p.
214502
.
12.
Bair
,
S.
,
2020
, “
A Discussion of Arana, A., Larrañaga, J., and Ulacia, I. (2019). Partial EHL Friction Coefficient Model to Predict Power Losses in Cylindrical Gears. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 233 (2) 303–316
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
234
(
7
), pp.
1168
1170
.
13.
Johnson
,
K. L.
, and
Tevaarwerk
,
J. L.
,
1977
, “
Shear Behaviour of Elastohydrodynamic Oil Films
,”
Proc. R. Soc. London. A. Math., Phys. Sci.
,
356
(
1685
), pp.
215
236
.
14.
Bair
,
S.
,
2022
, “
A Traction (Friction) Curve Is Not a Flow Curve
,”
Lubricants
,
10
(
9
), p.
221
.
15.
Novak
,
J. D.
, and
Winer
,
W. O.
,
1968
, “
Some Measurements of High Pressure Lubricant Rheology
,”
J. Lubr. Tech.
,
90
(
3
), pp.
580
590
.
16.
Liu
,
Y.
,
Wang
,
Q. J.
,
Bair
,
S.
, and
Vergne
,
P.
,
2007
, “
A Quantitative Solution for the Full Shear Thinning EHL Point Contact Problem Including Traction
,”
Tribol. Lett.
,
28
(
2
), pp.
171
181
.
17.
Bair
,
S. S.
,
2007
,
High Pressure Rheology for Quantitative Elastohydrodynamics
, 1st Ed.
Elsevier
,
Amsterdam
.
18.
Bair
,
S.
,
Fernandez
,
J.
,
Khonsari
,
M. M.
,
Krupka
,
I.
,
Qureshi
,
F.
,
Vergne
,
P.
, and
Wang
,
Q. J.
,
2009
, “
An Argument for a Change in Elastohydrodynamic Lubrication Philosophy
,”
Proc. Inst. Mech. Eng.
,
223
(
J4
), pp.
i
ii
.
19.
Neupert
,
T.
, and
Bartel
,
D.
,
2023
, “
Evaluation of Various Shear-Thinning Models for Squalane Using Traction Measurements, TEHD and NEMD Simulations
,”
Lubricants
,
178
(
4
), p.
178
.
20.
Xu
,
R.
,
Martinie
,
L.
,
Vergne
,
P.
,
Joly
,
L.
, and
Fillot
,
N.
,
2023
, “
An Approach for Quantitative EHD Friction Prediction Based on Rheological Experiments and Molecular Dynamics Simulations
,”
Tribol. Lett.
,
71
(
2
), p.
69
.
21.
Wingertszahn
,
P.
,
Schmitt
,
S.
,
Thielen
,
S.
,
Oehler
,
M.
,
Magyar
,
B.
,
Koch
,
O.
,
Hasse
,
H.
, and
Stephan
,
S.
,
2023
, “
Measurement, Modelling, and Application of Lubricant Properties at Extreme Pressures
,”
Tribologie und Schmierungstechnik
,
70
(
4+5
), pp.
5
12
.
22.
Bair
,
S. S.
,
Andersson
,
O.
,
Qureshi
,
F. S.
, and
Schirru
,
M. M.
,
2018
, “
New EHL Modeling Data for the Reference Liquids Squalane and Squalane Plus Polyisoprene
,”
Tribol. Trans.
,
61
(
2
), pp.
247
255
.
23.
Prentice
,
I. J.
,
Liu
,
X.
,
Nerushev
,
O. A.
,
Balakrishnan
,
S.
,
Pulham
,
C. R.
, and
Camp
,
P. J.
,
2020
, “
Experimental and Simulation Study of the High-Pressure Behavior of Squalane and Poly-α-Olefins
,”
J. Chem. Phys.
,
152
(
7
), p.
074504
.
24.
Barnett
,
J. D.
, and
Bosco
,
C. D.
,
1969
, “
Viscosity Measurements on Liquids to Pressures of 60 kbar
,”
J. Appl. Phys.
,
40
(
8
), pp.
3144
3150
.
25.
Bair
,
S.
, and
Kottke
,
P.
,
2003
, “
Pressure-Viscosity Relationships for Elastohydrodynamics
,”
Tribol. Trans.
,
46
(
3
), pp.
289
295
.
26.
Bridgman
,
P. W.
,
1949
, “
Viscosities to 30,000 kg/cm2
,”
Proc. Am. Acad. Arts Sci.
,
77
(
4
), pp.
117
128
.
27.
Bird
,
R. B.
,
Curtiss
,
C. F.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory
,
Wiley
,
NY
.
28.
Bair
,
S.
, and
Habchi
,
W.
,
2024
, “
Effects of a Typical Shear Dependent Viscosity on Analytical EHL Film Thickness Predictions: A Critical Issue for the Classical Approach
,”
Proc. Inst. Mech. Eng., Part J.: J. Eng. Tribol.
29.
Bair
,
S.
,
2004
, “
A Rough Shear-Thinning Correction for EHD Film Thickness
,”
Tribol. Trans.
,
47
(
3
), pp.
361
365
.
30.
Bair
,
S.
,
2018
, “
Generalized Newtonian Viscosity Functions for Hydrodynamic Lubrication
,”
Tribol. Int.
,
117
, pp.
15
23
.
31.
Bair
,
S.
,
2002
, “
The High Pressure Rheology of Some Simple Model Hydrocarbons
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
216
(
3
), pp.
139
149
.
32.
Bair
,
S.
,
2015
, “
The First Normal Stress Difference in a Shear-Thinning Motor Oil at Elevated Pressure
,”
Tribol. Trans.
,
58
(
4
), pp.
654
659
.
33.
Hutton
,
J. F.
, and
Phillips
,
M. C.
,
1972
, “
Shear Modulus of Liquids at Elastohydrodynamic Lubrication Pressures
,”
Nat. Phys. Sci.
,
238
(
87
), pp.
141
142
.
34.
Dyson
,
A. H. A. R.
,
Naylor
,
H.
, and
Wilson
,
A. R.
,
1965
, “
Paper 10: The Measurement of oil-Film Thickness in Elastohydrodynamic Contacts
,”
Proceedings of the Institution of Mechanical Engineers, Conference Proceedings
,
Leeds, UK
,
September
, Vol. 180, No. 2, pp.
119
134
.
SAGE Publications
,
London, UK
35.
Dyson
,
A.
, and
Wilson
,
A. R.
,
1965
, “
Paper 3: Film Thicknesses in Elastohydrodynamic Lubrication by Silicone Fluids
,”
Proceedings of the Institution of Mechanical Engineers, Conference Proceedings
,
Leeds, UK
,
September
, Vol. 180, No. 11, pp.
97
112
.
SAGE Publications
,
London, UK
.
36.
Jang
,
J. Y.
,
Khonsari
,
M. M.
, and
Bair
,
S.
,
2007
, “
On the Elastohydrodynamic Analysis of Shear-Thinning Fluids
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
463
(
2088
), pp.
3271
3290
.
37.
Jones
,
W. R.
,
1995
, “
Properties of Perfluoropolyethers for Space Applications
,”
Tribol. Trans.
,
38
(
3
), pp.
557
564
.
38.
Bair
,
S.
,
2001
, “
Measurements of Real Non-Newtonian Response for Liquid Lubricants Under Moderate Pressures
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
215
(
3
), pp.
223
233
.
39.
Bair
,
S.
, and
Khonsari
,
M.
,
1996
, “
An EHD Inlet Zone Analysis Incorporating the Second Newtonian
,”
ASME J. Tribol.
,
118
(
2
), pp.
341
343
.
40.
Bair
,
S.
,
1998
, “
Elastohydrodynamic Film Forming With Shear Thinning Liquids
,”
ASME J. Tribol.
,
120
(
2
), pp.
173
178
.
41.
Cameron
,
A.
,
1985
, “
Righting a 40-Year-Old Wrong: AM Ertel—The True Author of ‘Grubin EHL’ Solution
,”
Tribol. Int.
,
18
(
2
), p.
92
.
42.
Bair
,
S.
, and
Winer
,
W. O.
,
1997
, “
A Simple Formula for EHD Film Thickness of Non-Newtonian Liquids
,”
Elastohydrodynamics 1996
,
Leeds, UK
,
September
, Tribology Series, Vol.
32
.
Elsevier
,
Amsterdam
, pp.
235
241
.
43.
Hannon
,
W. M.
,
Hager
,
C. H.
, and
Sadinski
,
R. J.
,
2023
, “
A Comparison of the High-Pressure Viscometry and Optical Inference Methods Used to Determine the Pressure-Viscosity Coefficient
,”
ASME J. Tribol.
,
145
(
5
), p.
054104
.
44.
Bair
,
S.
,
Vergne
,
P.
, and
Querry
,
M.
,
2005
, “
A Unified Shear-Thinning Treatment of Both Film Thickness and Traction in EHD
,”
Tribol. Lett.
,
18
(
2
), pp.
145
152
.
45.
Hirst
,
W.
, and
Moore
,
A. J.
,
1974
, “
Non-Newtonian Behaviour in Elastohydrodynamic Lubrication
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
337
(
1608
), pp.
101
121
.
46.
Hutton
,
J. F.
, and
Phillips
,
M. C.
,
1973
, “
High Pressure Viscosity of a Polyphenyl Ether Measured With a New Couette Viscometer
,”
Nat. Phys. Sci.
,
245
(
140
), pp.
15
16
.
47.
Bair
,
S.
,
2002
, “
The Nature of the Logarithmic Traction Gradient
,”
Tribol. Int.
,
35
(
9
), pp.
591
597
.
48.
Evans
,
C. R.
, and
Johnson
,
K. L.
,
1986
, “
The Rheological Properties of Elastohydrodynamic Lubricants
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
200
(
5
), pp.
303
312
.
49.
Zhang
,
J.
, and
Spikes
,
H.
,
2020
, “
Measurement of EHD Friction at Very High Contact Pressures
,”
Tribol. Lett.
,
68
(
1
), p.
42
.
50.
Hartinger
,
M.
,
Dumont
,
M.-L.
,
Ioannides
,
S.
,
Gosman
,
D.
, and
Spikes
,
H.
,
2008
, “
CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact
,”
ASME J. Tribol.
,
130
(
4
), p.
041503
.
51.
Bruyere
,
V.
,
Fillot
,
N.
,
Morales-Espejel
,
G. E.
, and
Vergne
,
P.
,
2012
, “
Computational Fluid Dynamics and Full Elasticity Model for Sliding Line Thermal Elastohydrodynamic Contacts
,”
Tribol. Int.
,
46
(
1
), pp.
3
13
.
52.
Hajishafiee
,
A.
,
Kadiric
,
A.
,
Ioannides
,
S.
, and
Dini
,
D.
,
2017
, “
A Coupled Finite-Volume CFD Solver for Two-Dimensional Elasto-Hydrodynamic Lubrication Problems With Particular Application to Rolling Element Bearings
,”
Tribol. Int.
,
109
, pp.
258
273
.
53.
Havaej
,
P.
,
Degroote
,
J.
, and
Fauconnier
,
D.
,
2023
, “
A Quantitative Analysis of Double-Sided Surface Waviness on TEHL Line Contacts
,”
Tribol. Int.
,
183
, p.
108389
.
54.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication, Tribology Series, 37
,
Elsevier
,
Amsterdam
.
55.
Habchi
,
W.
,
2018
,
Finite Element Modeling of Elastohydrodynamic Lubrication Problems
,
Wiley
,
Chichester, UK
.
56.
Reynolds
,
O.
,
1886
, “
On the Theory of the Lubrication and Its Application to Mr Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Phil. Trans. R. Soc.
,
177
(
31 Dec. 1886
), pp.
157
234
.
57.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
58.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Bair
,
S.
,
Vergne
,
P.
, and
Morales-Espejel
,
G. E.
,
2008
, “
Thermal Elastohydrodynamic Lubrication of Point Contacts Using a Newtonian/Generalized Newtonian Lubricant
,”
Tribol. Lett.
,
30
(
1
), pp.
41
52
.
59.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2013
, “
Towards the True Prediction of EHL Friction
,”
Tribol. Int.
,
66
, pp.
19
26
.
60.
Habchi
,
W.
,
Vergne
,
P.
,
Bair
,
S.
,
Andersson
,
O.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G. E.
,
2010
, “
Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behavior of Circular TEHD Contacts
,”
Tribol. Int.
,
43
(
10
), pp.
1842
1850
.
61.
Habchi
,
W.
,
Bair
,
S.
, and
Vergne
,
P.
,
2013
, “
On Friction Regimes in Quantitative Elastohydrodynamics
,”
Tribol. Int.
,
58
, pp.
107
117
.
62.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2014
, “
Friction Reduction in Elastohydrodynamic Contacts by Thin Layer Thermal Insulation
,”
Tribol. Lett.
,
53
(
2
), pp.
477
486
.
63.
Habchi
,
W.
,
2020
, “
On the Negative Influence of Roller-End Axial Profiling on Friction in Thermal Elastohydrodynamic Lubricated Finite Line Contacts
,”
ASME J. Tribol.
,
142
(
11
), p.
111601
.
64.
Habchi
,
W.
,
Sperka
,
P.
, and
Bair
,
S.
,
2023
, “
Is Elastohydrodynamic Minimum Film Thickness Truly Governed by Inlet Rheology?
,”
Tribol. Lett.
,
71
(
3
), p.
96
.
65.
Habchi
,
W.
, and
Bair
,
S.
,
2023
, “
Quantifying the Inlet Pressure and Shear Stress of Elastohydrodynamic Lubrication
,”
Tribol. Int.
,
182
, p.
108351
.
66.
Bair
,
S.
, and
Habchi
,
W.
,
2021
, “
Your EHD Rig May Not Be as Elastohydrodynamic as You Think
,”
ASME J. Tribol.
,
143
(
8
), p.
081601
.
67.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1981
,
Ball Bearing Lubrication—The Elastohydrodynamics of Elliptical Contacts
,
Wiley-Interscience
,
NY
.
68.
Bair
,
S.
, and
Habchi
,
W.
,
2024
, “
Effects of a Typical Shear Dependent Viscosity on Analytical Elastohydrodynamic Lubrication Film Thickness Predictions: A Critical Issue for the Classical Approach
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
69.
Krupka
,
I.
,
Bair
,
S.
,
Kumar
,
P.
,
Khonsari
,
M. M.
, and
Hartl
,
M.
,
2009
, “
An Experimental Validation of the Recently Discovered Scale Effect in Generalized Newtonian EHL
,”
Tribol. Lett.
,
33
(
2
), pp.
127
135
.
70.
Bair
,
S.
,
Krupka
,
I.
,
Sperka
,
P.
, and
Hartl
,
M.
,
2013
, “
Quantitative Elastohydrodynamic Film Thickness of Mechanically Degraded Oil
,”
Tribol. Int.
,
64
, pp.
33
38
.
71.
Habchi
,
W.
,
Bair
,
S.
,
Qureshi
,
F.
, and
Covitch
,
M.
,
2013
, “
A Film Thickness Correction Formula for Double-Newtonian Shear-Thinning in Rolling EHL Circular Contacts
,”
Tribol. Lett.
,
50
(
1
), pp.
59
66
.
72.
Bair
,
S.
, and
Qureshi
,
F.
,
2014
, “
Time-Temperature-Pressure Superposition in Polymer Thickened Liquid Lubricants
,”
ASME J. Tribol.
,
136
(
2
), p.
021505
.
73.
Sarkar
,
R.
,
Devlin
,
M. T.
,
Li
,
S.
,
Glasgow
,
M. B.
, and
Jao
,
T. C.
(
2002
).
Low and High Temperature Non-Newtonian Behavior of Automatic Transmission Fluids
, SAE Technical Paper No. 2002-01-1695.
74.
Devlin
,
M. T.
,
Hammock
,
T.
, and
Jao
,
T. C.
,
2002
, “
Effect of Mechanical Shear on the Thin-Film Properties of Base Oil-Polymer Mixtures
,”
Lubr. Sci.
,
14
(
2
), pp.
169
184
.
75.
Laesecke
,
A.
, and
Bair
,
S.
,
2011
, “
High-Pressure Viscosity Measurements of 1,1,1,2-Tetrafluoroethane
,”
Int. J. Thermophys.
,
32
(
5
), pp.
925
941
.
76.
Bair
,
S.
,
2017
, “
A New High-Pressure Viscometer for Oil/Refrigerant Solutions and Preliminary Results
,”
Tribol. Trans.
,
60
(
3
), pp.
392
398
.
77.
Grunberg
,
L.
, and
Nissan
,
A. H.
,
1949
, “
Mixture Law for Viscosity
,”
Nature
,
164
(
4175
), pp.
799
800
.
78.
Bair
,
S.
,
Habchi
,
W.
,
Baker
,
M.
, and
Pallister
,
D. M.
,
2017
, “
Quantitative Elastohydrodynamic Film-Forming for an Oil/Refrigerant System
,”
ASME J. Tribol.
,
139
(
6
), p.
061501
.
79.
Richmond
,
J.
,
Nilsson
,
O.
, and
Sandberg
,
O.
,
1984
, “
Thermal Properties of Some Lubricants Under High Pressure
,”
J. Appl. Phys.
,
56
(
7
), pp.
2065
2067
.
80.
Alsaad
,
M.
,
Bair
,
S.
,
Sanborn
,
D. M.
, and
Winer
,
W. O.
,
1978
, “
Glass Transitions in Lubricants: Its Relation to Elastohydrodynamic Lubrication (EHD)
,”
J. Lubr. Tech.
,
100
(
3
), pp.
404
416
.
81.
Martini
,
A.
, and
Bair
,
S.
,
2010
, “
The Role of Fragility in EHL Entrapment
,”
Tribol. Int.
,
43
(
1–2
), pp.
277
282
.
82.
Wheeler
,
J. D.
,
Vergne
,
P.
,
Fillot
,
N.
, and
Philippon
,
D.
,
2016
, “
On the Relevance of Analytical Film Thickness EHD Equations for Isothermal Point Contacts: Qualitative or Quantitative Predictions?
,”
Friction
,
4
(
4
), pp.
369
379
.
83.
Habchi
,
W.
,
Sperka
,
P.
, and
Bair
,
S.
,
2023
, “
The Role of the Glass Transition for EHL Minimum Film Thickness
,”
Tribol. Int.
,
190
, p.
109061
.
84.
Plazek
,
D. J.
, and
Magill
,
J. H.
,
1966
, “
Physical Properties of Aromatic Hydrocarbons. I. Viscous and Viscoelastic Behavior of 1: 3: 5-Tri-α-Naphthyl Benzene
,”
J. Chem. Phys.
,
45
(
8
), pp.
3038
3050
.
85.
Paluch
,
M.
,
Dendzik
,
Z.
, and
Rzoska
,
S. J.
,
1999
, “
Scaling of High-Pressure Viscosity Data in Low-Molecular-Weight Glass-Forming Liquids
,”
Phys. Rev. B
,
60
(
5
), p.
2979
2982
.
86.
Houpert
,
L.
,
1985
, “
New Results of Traction Force Calculations in Elastohydrodynamic Contacts
,”
J. Lubr. Tech.
,
107
(
2
), pp.
241
248
.
87.
Bair
,
S. S.
,
2019
,
High Pressure Rheology for Quantitative Elastohydrodynamics
, 2nd Ed.,
Elsevier
,
Amsterdam
.
88.
Bair
,
S.
, and
Kotzalas
,
M.
,
2006
, “
The Contribution of Roller Compliance to Elastohydrodynamic Traction
,”
Tribol. Trans.
,
49
(
2
), pp.
218
224
.
89.
Bair
,
S.
,
2020
, “
Is It Possible to Extract the Pressure Dependence of Low-Shear Viscosity From EHL Friction?
,”
Tribol. Int.
,
151
, p.
106454
.
90.
Brandao
,
J. A.
,
Meheux
,
M.
,
Seabra
,
J. H.
,
Ville
,
F.
, and
Castro
,
M. J. D.
,
2011
, “
Traction Curves and Rheological Parameters of Fully Formulated Gear Oils
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
225
(
7
), pp.
577
593
.
91.
Slie
,
W. M.
, and
Madigosky
,
W. M.
,
1968
, “
Pressure Dependence of the Elastic Moduli of Liquid Glycerol
,”
J. Chem. Phys.
,
48
(
6
), pp.
2810
2817
.
92.
Barlow
,
A. J.
,
Harrison
,
G.
,
Irving
,
J. B.
,
Kim
,
M. G.
,
Lamb
,
J.
, and
Pursley
,
W. C.
,
1972
, “
The Effect of Pressure on the Viscoelastic Properties of Liquids
,”
Proc. R. Soc. Lond. A
,
327
(
1570
), pp.
403
412
.
93.
Bezot
,
P.
,
Hesse-Bezot
,
C.
,
Berthe
,
D.
,
Dalmaz
,
G.
, and
Vergne
,
P.
,
1986
, “
Viscoelastic Parameters of 5P4E as a Function of Pressure and Temperature by Light Scattering Technique
,”
ASME J. Tribol.
,
108
(
4
), pp.
579
583
.
94.
Bair
,
S.
, and
Winer
,
W. O.
,
1982
, “
Some Observations in High Pressure Rheology of Lubricants
,”
J. Lubr. Tech.
,
104
(
3
), pp.
357
364
.
95.
Hutton
,
J. F.
,
1984
, “
Reassessment of Rheological Properties of LVI 260 Oil Measured in a Disk Machine
,”
ASME J. Tribol.
,
106
(
4
), pp.
536
537
.
96.
Habchi
,
W.
, and
Bair
,
S.
,
2019
, “
Is Viscoelasticity of any Relevance to Quantitative EHL Friction Predictions?
,”
Tribol. Int.
,
135
, pp.
96
103
.
97.
Hutton
,
J. F.
,
1973
, “Theory of Rheology,”
Interdisciplinary Approach to Liquid Lubricant Technology
,
P.M.
Ku
, ed.,
NASA Technical Document
, Technical Paper No. SP-318, pp.
187
261
.
98.
Bair
,
S.
, and
Habchi
,
W.
,
2023
, “
The Role of Fragility in Thermal Elastohydrodynamics
,”
Tribol. Lett.
,
71
(
1
), p.
24
.
99.
Casalini
,
R.
, and
Roland
,
C. M.
,
2005
, “
Why Liquids Are Fragile
,”
Physical Rev. E
,
72
(
3
), p.
031503
.
100.
Reddyhoff
,
T.
,
Schmidt
,
A.
, and
Spikes
,
H.
,
2019
, “
Thermal Conductivity and Flash Temperature
,”
Tribol. Lett.
,
67
(
1
), pp.
1
9
.
101.
Liu
,
H. C.
,
Zhang
,
B. B.
,
Bader
,
N.
,
Poll
,
G.
, and
Venner
,
C. H.
,
2020
, “
Influences of Solid and Lubricant Thermal Conductivity on Traction in an EHL Circular Contact
,”
Tribol. Int.
,
146
, p.
106059
.
102.
Evans
,
R. D.
,
Cogdell
,
J. D.
,
Richter
,
G. A.
, and
Doll
,
G. L.
,
2008
, “
Traction of Lubricated Rolling Contacts Between Thin-Film Coatings and Steel
,”
Tribol. Trans.
,
52
(
1
), pp.
106
113
.
103.
Kalin
,
M.
, and
Polajnar
,
M. J. T. I.
,
2013
, “
The Correlation Between the Surface Energy, the Contact Angle and the Spreading Parameter, and Their Relevance for the Wetting Behaviour of DLC With Lubricating Oils
,”
Tribol. Int.
,
66
, pp.
225
233
.
104.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2004
, “
A Generating Mechanism for Apparent Fluid Slip in Hydrophobic Microchannels
,”
Phys. Fluids
,
16
(
5
), pp.
1509
1515
.
105.
Ndiaye
,
S. N.
,
Martinie
,
L.
,
Philippon
,
D.
,
Devaux
,
N.
, and
Vergne
,
P.
,
2017
, “
A Quantitative Friction-Based Approach of the Limiting Shear Stress Pressure and Temperature Dependence
,”
Tribol. Lett.
,
65
(
4
), pp.
1
14
.
106.
Winer
,
W. O.
, and
Bair
,
S.
,
1979
, “
Shear Strength Measurements of Lubricants at High Pressure
,”
J. Lubr. Tech.
,
101
(
3
), pp.
251
257
.
107.
Bair
,
S.
, and
Winer
,
W. O.
,
1993
, “
A New High-Pressure, High-Shear Stress Viscometer and Results for Lubricants
,”
Tribol. Trans.
,
36
(
4
), pp.
721
725
.
108.
Bair
,
S.
,
1995
, “
Friction in Lubricated Concentrated Contact
,”
ASME J. Tribol.
,
117
(
2
), pp.
367
368
.
109.
Harris
,
K. R.
,
2015
, “
Temperature and Pressure Dependence of the Viscosities of Krytox GPL102 Oil and Di (Pentaerythritol) Hexa (Isononanoate)
,”
J. Chem. Eng. Data
,
60
(
5
), pp.
1510
1519
.
110.
Wakeham
,
W. A.
,
Assael
,
M. J.
,
Avelino
,
H. M.
,
Bair
,
S.
,
Baled
,
H. O.
,
Bamgbade
,
B. A.
,
Bazile
,
J. P.
, et al
,
2017
, “
In Pursuit of a High-Temperature, High-Pressure, High-Viscosity Standard: the Case of Tris (2-Ethylhexyl) Trimellitate
,”
J. Chem. Eng. Data
,
62
(
9
), pp.
2884
2895
.
111.
Kondratyuk
,
N. D.
, and
Pisarev
,
V. V.
,
2021
, “
Predicting Shear Viscosity of 1,1-Diphenylethane at High Pressures by Molecular Dynamics Methods
,”
Fluid Phase Equilib.
,
544–545
, p.
113100
.
You do not currently have access to this content.